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Abstract. We exhibit a Finsler metric on the 2-sphere whose systolic (Holmes-Thompson)

ratio is 4π
3

. This is bigger than the conjectured maximal Riemannian systolic ratio of 2
√

3
achieved by the Calabi-Croke metric. The construction of the Finsler metric is heavily
inspired by [CS20].

1. Introduction.

As a general rule of thumb, Finsler metrics produce sharper geometric inequalities than
the special case of Riemannian metrics. Evidences for that have been given in different
situations: for the minimal entropy problem, compare e.g [BCG95] (Riemannian) and
[Ver99] (Finslerian), Finsler rational counterexamples to the minimal filling conjecture
[BI02] or (more closely related to the present text), the disk of the least area for a given
radius is Finsler, compare [CCLW17] (Riemannian) and [CS20] (Finslerian).

In this paper, we confirm this phenomenon in the context of the systolic geometry of the
2-dimensional sphere.

We first consider a Riemannian 2-sphere (S2, g). Its systole, denoted sys(g), is the length
of the shortest non constant periodic geodesic 1. As a length, the systole is not scale
invariant and it is customary to normalize the systole by the area. Indeed, the ratio

sys2(g)

Area(g)
,

called the systolic ratio is scale invariant and, by a result of [Cro88], is bounded on the
set of Riemannian metrics on S2, thus opening the challenging problem of finding the best
systolic ratio sys(S2) on the 2-sphere:

sys(S2) = sup
g

sys2(g)

Area(g)
.
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1This definition is adapted to the case of the sphere; when the manifold has topology it is classical to
consider the least length of non contractible geodesics
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It is conjectured in [Cro88] that the extremal metric is the Calabi-Croke doubled triangle:
consider two flat equilateral triangles whose side lengths are 1, glued along the edges. The

resulting surface is homeomorphic to a sphere, its area is
√

3
2 (twice the area of a triangle)

and the systole is achieved by the curves running through the heights of the triangles, their
lengths are

√
3, so that the systolic ratio is 2

√
3. The Calabi-Croke sphere is at least a local

maximum for the systolic ratio [Bal06], even for a local variation among Finsler metrics
[Sab10].

The main result of this paper is that we can go past this value of 2
√

3 by considering
Finsler metrics and we prove the following

Theorem 1. There exists a Finsler metric on S2 with six singularities whose systolic ratio
is arbitrarily close to 4π

3 .2 The metric is smooth outside the singularities.

Remark 2. The metric appearing in the statement of theorem 1 is only defined on S2

minus 6 points. We do not know how to remove singularities (nor if it is possible to do so).
We discuss the regularity of this metric in Section 5.

This result gives a hint on the methods relevant to attack the Croke conjecture. Since the
conjecture is already false for Finsler manifolds, none of the generic metric techniques may
apply and the technology for the proof must stay inside classical Riemannian geometry.

In the preliminary section 2, we recall the definition of Finsler surfaces and their Holmes-
Thompson volumes, in section 3, we present the construction of the Cossarini-Sabourau
Finlser disk and in section 4, we perform a construction similar to the Calabi-Croke metric
with the Cossarini-Sabourau disk and show that the metric we obtain is approximated by
Finsler metrics whose systolic ratio converge to 4π

3 .

2. Finsler surfaces.

Finsler metrics are a relaxation of Riemannian metrics, similar than enlarging the class
of ellipsoids by arbitrary convex sets. More precisely:

Definition 3. Let S be a smooth surface. A (smooth) symmetric Finsler metric on S is a
nonnegative function F : TS → R+ satisfying the following conditions:

• The restriction of F to any TxS is a symmetric norm.
• F is positive and smooth outside the zero section.
• For any v ∈ TxS the Hessian of the restriction of F 2 to TxS at v is positive definite.

It follows from the definition that the unit ball

Bx = {v ∈ TxS F (x, v) 6 1}
is a strict convex set.

The systolic ratio features the area of the metric, canonically defined for a Riemannian
metric but different choices of area measures coexist for a Finsler metric. Here, we consider
the so-called Holmes-Thompson area: its symplectic nature makes it easily computable
with Blashke and Santaló formulas.

2Indeed 3.464 · · · = 2
√

3 < 4π
3

= 4.188 · · · .
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In order to define the Holmes-Thompson area, we denote by Fx the norm on TxS given
by F and by F ∗x the dual norm on T ∗xS (whose unit ball is the dual convex set B∗x of Bx).

The cotangent space naturally carries a symplectic structure expressed in coordinates
(x1, x2, ξ1, ξ2) by

ω = dξ1 ∧ dx1 + dξ2 ∧ dx2.

Note that Ω = 1
2ω ∧ ω is a volume form on T ∗S. The Holmes-Thompson area is the

push-forward onto S by the canonical projection of this volume form restricted to the unit
co-ball bundle:

Definition 4. Let A be a Borel set in S. Its Holmes-Thompson area is given by

Area(A) =
1

π

∫
∪x∈AB∗xS

Ω.

The constant 1
π is a canonical normalization constant, so that for instance the area

of a Euclidean unit ball is exactly π. Throughout this text is hidden the fact that the
Holmes-Thompson area is computed by Blaschke and Santalo formulas, as in [CS20, Section
3]. We consider again this symplectic measure in Section 5.

3. The Cossarini-Sabourau Finsler disk.

In this section we recall the construction of the Cossarini-Sabourau Finsler disk (see
[CS20, Section 11] for details).

We consider a regular hexagon H, centered at 0 in the complex Euclidean plane and
whose vertices are located at 2√

3
eikπ/3 for k = 0, · · · 5. The constant 2√

3
is chosen in such

a way that the metric we are going to describe turns the hexagon into a unit ball. To

define this metric, we denote by Lk the lines
{
tei

π
6

+k 2π
3 t ∈ R

}
, by Lk the unit segment{

tei
π
6

+k 2π
3 t ∈ [0, 1]

}
, by πk the orthogonal projection onto Lk and by πk the trace of the

projection πk on Lk ⊂ Lk. Finally, we denote by |·| the usual Lebesgue measure on any of
the lines Lk. See figure 1.

Definition 5. (1) Let γ : [0, 1]→ H be a piecewise smooth curve. We define its length
by

l(γ) =
∑

k=0,1,2

|πk(γ([0, 1]))| .

(2) The pseudo-metric on H is the one associated to this length structure:

dH(x, y) = inf
γ
l(γ),

where inf is taken on all piecewise smooth curves joining x to y.

Remark 6. We actually rescaled the Cossarini-Sabourau metric by a factor 4. This doesn’t
change the systolic ratio.



FINSLER SYSTOLIC RATIO ON THE 2-SPHERE 4

H

L2

L0
L1

Figure 1. Geometry of the distance dH .

We are now interested in the metric properties of (H, dH). Note first that dH is not
an actual metric because there are different points at distance 0. Indeed a straight line
crossing one of the Li orthogonally and sufficiently small has length 0. We could consider
the quotient of H by points at distance 0 but the description of the geodesic flow is easier
in the hexagon.

From [CS20], we sumarize the relevant properties (a sketch of the argument is presented
in Section 5).

Proposition 7. [CS20, Lemma 11.5, Poposition 11.7, Remark 11.3]

(1) The pseudo-metric space (H, dH) is a limit for the L∞ topology of Finsler metric
spaces.

(2) Through L∞ approximations by Finsler metrics, the Holmes-Thompson area con-
verges to 6

π .
(3) The geodesics of the Finlser approximations are the Euclidean straight lines.

Remark 8. The geodesic flow of (H, dH) is not well defined: 0 is a branching point and
there is no uniqueness of geodesics.

Approximating (H, dH) by projective Finsler spaces has the double interest of transforming
the pseudo-metric to an actual metric and also selecting the straight lines as geodesics.

In the rest of this paper, we consider only the restricted geodesic flow on (H, dH) which
consists in straight lines in H. Every other geodesic is irrelevant to compute the systolic
ratio.
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4. The Calabi-Croke Cossarini-Sabourau Finsler sphere and its systolic
ratio.

We now perform a construction similar to the Calabi-Croke metric on S2: we glue two
Cossarini-Sabourau disks along the edges. The resulting metric in not quite Finsler but is
approximated by the glueing of two Finlser disks. Since the approximation preserves the
systolic ratio, we reason with the limiting (non Finlser) metric that we denote (S2, dH).

Note that the metric is not defined at the vertices of the hexagons. Consequently, there is
no geodesic passing through a vertex. Moreover the metric is (a priori) only continuous on
the edges (indeed the Finsler metric is well defined on the edges of the Cossarini-Sabourau
hexagon and, since we took two copies of the same hexagon, there is a well-defined metric
on the glueing edges and the resulting metric is continuous). See Section 5 for a comment
on the regularity.

We denote by p the canonical projection p : S2 → H. Directly following from the fact
that (restricted) geodesics are straight lines, we get a description of the geodesic flow in H.

Proposition 9. The image of restricted geodesics through p consists in billiard trajectories
inside H.

Proof. Inside a hexagon, geodesics are the straight lines. When a geodesic hits an edge,
it can only do so transversaly, since there is no geodesic passing through a vertex, and is
continued in a straight line on the other hexagon with a direction given by the velocity of
the trajectory on the edge. Moreover, on an edge, the direction of a geodesic in one hexagon
is mapped through p to the reflected direction (according to Descartes law of reflection). �

The rest of this paper is devoted to the computation of the systole. Precisely:

Proposition 10. The systole of (S2, dH) for the restricted geodesic flow is 4 and is achieved
for instance by a curve running twice through a height of H.

Proof. Subsequently the most important property of the hexagon is that it tiles the plane,
allowing to precisely describe the geodesic flow on (S2, dH). This procedure is classical but
we recall it for completeness (see [Gut96]).

Inside H, there is no trapped geodesic so we may assume that the starting point of a
geodesic belongs to an edge of H. Without loss of generality, this edge is supported on the
x axis in R2 and contains 0. In each hexagon, there is two different types of equilaleral
triangles and we may also assume the the initial edge belongs to a triangle carrying a metric
l1 (such triangles are the ones containing none of the segment Li). Indeed, any point in
H is connected to a point in a l1-type triangle by a geodesic of length 0. Hence we don’t
change the systole by assuming that the initial point of every geodesic lies on the edge of a
l1-type triangle.

Recall that we chose the normalization in such a way that the length of the edges of H
are 2√

3
(the heights have length 1).

Let

e1 =

( 2√
3

1

)
and e2 =

(
0
2

)
.
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We tile the plane by hexagons so that, to every point of the lattice Ze1 ⊕ Ze2, corresponds
a unique hexagon. To each hexagon is attributed a name according to each point of the
lattice it corresponds. For instance the original hexagon H is named (0, 0), the one just
above is (0, 1), the one image of the original one by e1 is (1, 0) and so on.

To every billiard geodesic in H corresponds a straight line in R2. Indeed, instead of
bouncing on an edge, a straight line is continued in a reflected hexagon along the edge.

e1

e2

H

L0

L0

L0

L1

L1

L1

L2

L2

L2

(0, 1)

(1, 0)

(1, 1)

(1,−1)

(2, 0)

(2,−1)

Figure 2. Tiling by hexagons to unfold a billiard trajectory.

In this description, periodic trajectories correspond to straight lines following a direction

va,b = ae1 + be2, a, b ∈ Z.
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For the systole, we are only intersted in simple closed geodesics, so we may assume that
gcd(a, b) = 1. The actual periodic geodesic corresponds to the curve

γa,b,x : [0, ra,b,x] −→ R2

t 7−→
(
x
0

)
+ tva,b

,

where ra,b,x > 1 is a rational number. Note that the periodic geodesic depends on the

starting point

(
x
0

)
.

The fact that we need to allow the curve to go beyond the hexagon (a, b) supports two
situations. First, when the trajectory reaches (a, b), the hexagon (a, b) might not be an
image by a translation of the original hexagon H, hence the edge we reach might not
correspond by the action of Ze1 ⊕ Ze2 on R2 to the original starting edge. And second, not
every periodic billiard trajectory gives a periodic geodesic on (S2, dH), it is only the case if
the trajectory meets an even number of hexagons. This number ra,b,x may depend on the
starting point x.

For instance, we will argue that the systole is achieved by a = 0, b = 1, for which r0,1,x

has to be 2 for any x. See figure 2.
In the following discussion, we will use repeatedly the computational arguments below.

Remark 11. (1) Any straight line that joins an edge of an hexagon to the opposite
edge has length 2. For further use, we call those lines generalized diameters.

(2) Any straight line that joins an edge which does not belong to a l1-type triangle
to the parallel diagonal inside the hexagon has length 1. We call such a line a
generalized radius. Such a triangle contains one of the segment Li and we say that
the corresponding radius is associated to the the segment Li.

(3) In the computation of the systole, we will frequently encounter the following situa-
tion that we describe now once and for all. We consider a diamond made with two
triangles of type l1 glued along an edge shared by two hexagons (a, b) and (a′, b′).
If a geodesic crosses the hexagon entering and exiting by two opposite sides, there
is segment Li in (a, b) and a segment Li′ in (a′, b′) with the property that the sum
of the lengths of the projection of the part of the geodesic in (a, b) on Li and the
length of the projection of the part of the geodesic in (a′, b′) on Li′ is 1. See figure
3. We will refer to this situation by saying that the geodesic crosses the diamond
(a, b), (a′, b′) (if necessary: with contributing lengths on the pair Li, Li′).

To compute the systole, we have to bound the length from below to every periodic
geodesic. Note that, to a trajectory γa,b,x directed by va,b, we associate the sequence of
hexagons (0, 0), · · · , (a, b), · · · visited during the trajectory. This sequence is well defined
since every trajectory intersects the edges transversaly (after we excluded trajectories hitting
the corners of the hexagon) but may depend on x and not only on the direction va,b.

For further description of the geodesics, we assume without loss of generality that in the
original hexagon H, the segements Li’s are organized such that L0 is directed by the y-axis
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(0, 0)

(1, 0)

L0

L1 L2

L2

L0

L1

Figure 3. The geodesic crosses a diamond (0, 0) (1, 0) with contributing
lengths in L0, L2.

and L0, L1, L2 are cyclically ordered (such as in figure 2). The geometry of each hexagon
along a trajectory is deduced accordingly.

By symmetry with respect to e2, we may assume that a > 0. That forces every periodic
trajectory to fall into one of the following types according to the three first hexagons visited.

Case 1 : Trajectory of type (0, 0)(0, 1)(0, 2) · · · (a, b).
Such a trajectory covers two generalized diameters. It follows that it has length greater

or equal than 4 (equality holds, e.g. for γ0,1,x for any x).

Case 2 : Trajectory of type (0, 0)(0, 1)(1, 1) · · · (a, b).
In this case (a, b) cannot be (1, 1) because the hexagons visited by γ1,1,x are (0, 0)(1, 0)(1, 1)

for every x. Also the trajectory (0, 0)(0, 1) is not closed since r0,1,x = 2 for any x.
When such a geodesic reaches the hexagon (1, 1), it has covered a generalized diameter

in (0, 0) and 2 generalized radius in (1, 1), associated to L0 and L2. Hence, its length must
be at least 4.
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Case 3 : Trajectory of type (0, 0)(1, 0)(1, 1) · · · (a, b).
In this case (a, b) cannot be (1, 1) because r1,1,x = 3 (in particular the trajectory does

not close on the edge between (1, 1) and (2, 1) because there is an odd number of hexagons
visited). Hence we can further split the trajectory into different subcases.

In all of the different subcases, the trajectory covers one diamond of type (0, 0) (1, 0)
with contribution by L0 and L2, delivering already length 1.
Subcase A. Trajectory of type (0, 0)(1, 0)(1, 1)(1, 2) · · · (a, b).

The trajectory must cover at least one generalized diameter inside (1, 1) for an additional
length of 2. Also, any such geodesic will continue either inside (1, 3) or (2, 3) and must
cover a generalized radius associated to L2 in (1, 2). We get a length bigger than 4.
Subcase B. Trajectory of type (0, 0)(1, 0)(1, 1)(2, 1) · · · (a, b).

Beside the first diamond, such a trajectory must cross the diamond (1, 0), (1, 1) with
contribution in L1 and L0 and the diamond (1, 1), (2, 1) with contribution in L2 and L1.

So far, the length of the geodesic is at least 3. If it follows by entering the hexagon (3, 1),
it covers another generalized radius of type L0 in (2, 1). If it follows by the hexagon (2, 2),
it crosses another diamond (2, 1), (2, 2) with contribution in L2 and L0.

In any case, the length is then at least 4.
Subcase C. Trajectory of type (0, 0)(1, 0)(1, 1)(2, 0) · · · (a, b).

Let us first assume that the trajectory is not some γ2,1,x with r2,1,x = 1, which means
that the trajectory does not stop entering (2, 1).

Such a trajectory must continue by (3, 1). Hence it crosses 4 diamonds between (0, 0)
and (1, 0), between (1, 0) and (1, 1), between (2, 0) and (2, 1) and between (2, 1) and (3, 1)
giving at least length 4.

It remains to compute the length of the closed geodesics γ2,1,x for which r2,1,x = 1. Beside
the two diamonds between (0, 0) and (1, 0) and between (1, 0) and (1, 1), there is a ”split
diamond” (0, 0) (2, 0) with contribution in L1 and L2.

The rest of the contribution to the length is given by L2 in (0, 0), L0 in (1, 0) and L1 in
(1, 1) and (2, 0). The sum of those contributions is exactly 1 and γ2,1,x is a systole. The
union of the projections of the parts of the geodesic inside each heaxagon cover a complete
segment.

Case 4 : Trajectory of type (0, 0)(1, 0)(2, 0) · · · (a, b).
This trajectory covers a generalized diameter in (1, 0) and either another generalized

diameter in (2, 0) if it follows by entering (3, 0), either two generalized radii in (2, 0),
associated to L0 and L1 if it goes toward (2, 1).

Case 5 : Trajectory of type (0, 0)(1,−1)(2,−1) · · · (a, b).
Such a trajectory must contain two generalized radii associated to L0 and L2 in (1,−1)

for a length of 2.
Then, if the trajectory crosses (2,−1) escaping through (2, 0), it must cover two additional

generalized radii in (2,−1), associated to L0 and L2. If the trajectory escapes through
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(3,−1), it covers a generalized diameter inside (2,−1). In any case, we get at least length 2
in (2,−1).

Case 6 : Trajectory of type (0, 0)(1,−1)(1, 0) · · · (a, b).
Subcase A. Trajectory of type (0, 0)(1,−1)(1, 0)(2, 0) · · · (a, b).

Such a trajectory continues necessarily by (3, 0) and must crosses two diamonds between
(1,−1) and (1, 0) and between (1, 0) and (2, 0), the generalized radii associated to L2 in
(2, 0) and the one associated to L2 in (3, 0). We get a length at least 4.
Subcase B. Trajectory of type (0, 0)(1,−1)(1, 0)(2,−1) · · · (a, b).

Such a trajectory must continue by (2, 1) and may stop after crossing (2, 1). Along the
way, it crosses two diamonds (1,−1) (1, 0) and (2,−1), (2, 0), and one split diamond (0, 0)
(2, 0) with contribution in L1 and L2.

A similar argument to the diamond delivers another length 1. Indeed the geodesic enters
(1,−1) by the edge orthogonal to L2 and exits (1, 0) by the edge orthogonal to L0. Hence,
the sum of the length of the projection of the part of the geodesic inside (1,−1) on L2 and
the part inside (1, 0) on L0 equals 1. �

Theorem 1 then follows from Proposition 7 (2) and Proposition 10.

5. Regularity Issues

So far the metric on S2 that we constructed has singularities and is only smooth outside
of the glueing edges. We conclude this paper by sketching how we could improve regularity
along the edges without changing the geodesic flow. This discussion is based on [Pog79] and
[CS20, Chapter 10]. The goal of this section is to check that we can extend the regularization
procedure in [CS20, Paragraph 11.2] from the hexagon to the sphere. We do not repeat the
proofs which are straightforward adaptations.

It is remarkable that the symplectic form described in Section 2, in the special case of
projective Finsler structure on R2, characterizes the metric, as well as its regularity. Indeed,
consider the set of oriented lines Γ in R2, identified with R×S1 (the factor S1 is the direction,
the factor R gives the signed distance to the origin). Let µ be a nonnegative Borel measure
on Γ. We assume that the measure is invariant under reversing the orientation, gives finite
mass to every compact set, gives zero mass on the subset of lines passing through a given
point and gives positive mass to the set of lines crossing a given non degenerate segment.
To such a measure, we associate the distance

dµ(x, y) =
1

4

∫
Γ
] (γ ∩ [x, y]) dµ(γ).

This distance is projective: straight lines, suitably reparametrized, are geodesics.

Theorem 12. [Pog79] and [CS20, Chapter 10] The distance dµ is Finsler if and only if µ
is a positive smooth measure, in which case it coincides with the symplectic measure.

The usefullness of this statement comes from the fact that the distance dH on the hexagon
is associated to a measure and we can regularize the metric by regularizing the measure
while preserving the geodesic flow (every metric is projective).
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By performing a stereographic projection through one of the singularities, we may
replace the sphere S2 by R2. We identify each of the hexagons with their images under
stereographic projection. One of the hexagon is denoted Hd and the other one Hu. We
consider the family of lines Dt

k,d and Dt
k,u where Dt

k,d is the line inside Hd orthogonal to

Lk at distance t from the origin (similarly in Hu). For a given t and k, Dt
k,d consists in two

oriented lines In the coordinate system Γ = R × S1, the set Dt
0,d ∪Dt

1,d ∪Dt
2,d is written

as [0, 1]×
{
ei
π
6 , ei

5π
6 , ei

3π
2

}
∪ [−1, 0]×

{
ei

7π
6 , ei

11π
6 , ei

π
2

}
(the union corresponds to the two

possible orientations). We endow R× S1 with the usual Lebesgue measure dxdθ (dθ has
finite mass 2π). The measure µd is (2 times) the restriction of dxdθ to Dt

0,d ∪Dt
1,d ∪Dt

2,d.
We construct similarly µu. Finally we set

µ = µd + µu.

We now conclude with the very same procedure as in [CS20, Paragraph 11.2]. We convolve
the measure µ + εdxdθ with a smooth approximation of the Dirac mass. With theorem
12 and [CS20, Lemma 11.5], this measure gives in turn a smooth Finsler metric ε-close to
(S2, dH).

A much more delicate task is to remove the singularities.
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[Sab10] Stéphane Sabourau. Local extremality of the Calabi-Croke sphere for the length of the shortest
closed geodesic. J. Lond. Math. Soc. (2), 82(3):549–562, 2010.

[Ver99] Patrick Verovic. Problème de l’entropie minimale pour les métriques de Finsler. Ergodic Theory
Dynam. Systems, 19(6):1637–1654, 1999.
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