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Abstract. We compare the regularity of the boundary of a convex set with

the value of its Finslerian volume entropy. The main result states that the vol-
ume entropy of a two-dimensional domain whose associated curvature measure

is Ahlfors α-regular is 2α
α+1

.

1. Introduction

1.1. Hilbert geometries. To define a Hilbert geometry, we need a convex compact
subset Ω of Rn (or a strictly convex set in RPn). Then we construct a distance in
the interior of the convex set using the cross-ratio.

Precisely, take two points p and q in Int(Ω). The compactness and convexity
show that there exist two uniquely determined points a and b on ∂Ω such that a,
p, q, b are aligned in this order. We set

dΩ(p, q) =
1

2
log
|q − a| |p− b|
|p− a| |q − b| .

Figure 1. Hilbert metric

When Ω is an ellipsoid, we construct the Klein model for hyperbolic geometry.
For any other case, the distance is not even Riemannian ([Kay67]). However it is
Finslerian, infinitesimally generated by the field of norms (‖·‖x)

x∈Ω
given by

‖v‖x =
1

2

(
1

t1
+

1

t2

)
where t1 and t2 are positive real numbers such that x + t1v and x − t2v meet the
boundary of Ω (figure 2).

The couple (Ω, dΩ) is called a Hilbert geometry. Such spaces enjoy the following
remarkable properties [PT14]:
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Figure 2. Finslerian structure

• The metric spaces (Ω, dΩ) are complete. In particular, the boundary ∂Ω is
metrically at infinity.
• (Affine or projective) straight lines are geodesics.
• The group of projective transformations leaving Ω invariant acts by isome-

tries on (Ω, dΩ).

Remark 1. Throughout this text, we will use the notation |·| for refering to Eu-
clidean lenghts, norms or volumes and ‖·‖ will be used for the Finslerian quantities.

1.2. Entropy. In this context of Hilbert geometries, the main goal of this article is
to study an invariant, the volume growth entropy. The volume entropy of a metric
measured space (X, d, µ) is the exponential asymptotic growth rate of volume of
balls when the radius goes to infinity. Precisely, it is the real number defined as
the limit (whenever it exists) of

log(µ(B(x,R)))

R

(it is independent of the choice of a basepoint x). It is known to be a powerful
invariant. When (X, d) is a Riemannian manifold and µ is the Riemannian volume,
it has been used several times to capture a lot of informations about the ambient
geometry (see for instance [BCG95]).

Returning to the context of a Hilbert geometry (Ω, dΩ) given by a convex Ω ⊂ Rn,
one of the common issue is that the volume is not canonically defined. However
we can isolate axioms for a notion of appropriate volume ([ÁPT04] for which the
entropy does not depend on the choice of an appropriate volume. In this paper, we
compute volumes with the so-called Hausdorff (n-)measure. Let us define it.

We consider the function σ on Ω given by

σ(x) =
ωn
L(Bx)

where ωn is the measure of the unit Euclidean ball of Rn, L is the Lebesgue measure
and Bx is the Finslerian unit ball. Finally the Hausdorff measure µ is the measure
(absolutely continuous with respect to the Lebesgue measure), the density of which
is given by σ, i.e:

µ(A) =

∫
A

σ(x)dL(x)

for any Borel set A. The density σ is called the Busemann function. Tha fact that
µ is indeed the n-dimensional Hausdorff measure follows from [Bus47].

For a general Hilbert geometry, the quantity
log(µ(B(x,R)))

R
does not converge

in general when R goes to infinity ([Ver12] corollary 4), so we usually consider lower
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and upper entropies:

h(Ω) = lim inf
R→∞

log(µ(B(x,R)))

R
and h(Ω) = lim sup

R→∞

log(µ(B(x,R)))

R
.

For instance, when Ω is an ellipsoid in Rn,

h(Ω) = h(Ω) = n− 1.

The notation h implicitly means that
log(µ(B(x,R)))

R
converges.

The volume entropy of Hilbert geometries has been studied by various authors.
For instance it has been proved by N. Tholozan in [Tho15] that the entropy of
Hilbert geometries never exceed the hyperbolic entropy. This result has been known
in dimension 2 and 3 since the work of C. Vernicos in [Ver12] and in the case of
divisible convex sets thanks to a result of M. Crampon in [Cra09]. It is known
that the entropy can take any value in dimension 2 ([Ver12] corollary 4) and it
has been precisely computed in many cases: for instance the entropy vanishes for
convex polytopes [CVV11] and it is extremal as soon as the convex set is sufficiently
regular. Actually the latter statement is the starting point of this paper, let us make
it precise:

Theorem 2 (First main theorem in [BBV10]). Suppose the boundary of the convex
set Ω is a hypersurface of Rn of regularity C1,1. Then the entropy exists and

h(Ω) = n− 1.

1.3. Question. The question we would like to address in this paper is suggested
by the previous result and is the following

Question 3. Can we find a relation between the regularity of the boundary of a
convex domain and the value of its Finslerian volume entropy ?

In particular, is there a lower bound for the entropy of a domain given the
regularity of its boundary? And are there lower regularities for the boundary than
C1,1 which guarantee maximal entropy?

1.4. Results. We propose two types of answer for the previous question. We first
describe a bijective relation between entropy and regularity in dimension 2. Follow-
ing theorem 2, a natural (but slightly naive) approach would be to try to understand
a C1,α regular convex set, for α < 1. As a global invariant, the volume entropy only
sees the part of the convex set with maximal volume growth. In particular, as soon
as there is a part of the boundary of Ω which has regularity C2 with positive Gauss
curvature, then h(Ω) = n− 1. This may happen for a C1,α regular convex set and
this implies that in particular there is no hope of characterizing the entropy of a
domain with its regularity C1,α. Hence, in order to precisely compare the regu-
larity and the entropy, we need the regularity to realize the following constraint:
”Whenever the Gauss curvature is positive (in a possibly weak sense), then the
regularity must be strictly C1,α but not more.” This is roughly the definition of
Ahlfors α-regularity. We postpone until section 2 the precise definition of Ahlfors
regularity. The main result of this paper is then the following.

Theorem 4 (First main theorem). Let Ω be a convex and relatively compact domain
of R2 which is Ahlfors α-regular. Then

h(Ω) =
2α

α+ 1
.
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Remark 5. The limit set of a convex-cocompact Fuchsian group is a Ahlfors α-
regular Cantor set for some α < 1 (in dimension 2). Let Ω be the convex hull of
this limit set in H2. By a result of Patterson [Pat76], we know that the hyperbolic
exponential growth inside Ω is exactly α. In theorem 4, the growth is faster since
2α
α+1 > α and this reflects the fact that the Hilbert distance in Ω is always bigger

than the (trace of the) hyperbolic distance. Indeed, when approaching an edge of
Ω which is inside H2, the Hilbert metric blows up, whereas the hyperbolic metric
does not.

In a second and independent part of this paper, we show a stronger version of
theorem 2, weakening the assumption of C1,1-regularity. The space of C1,1 maps
is isomorphic to the Sobolev space W 2,∞. We show that for some finite values of
p, domains whose boundaries are W 2,p-regular must have volume entropy equal to
n − 1. i.e. we show that we can decrease the Sobolev regularity and still be sure
to get a convex set of maximal volume entropy.

Theorem 6 (Second main theorem). Let Ω be a convex relatively compact subset
of Rn. Assume that the boundary is parametrized by a homeomorphic map ϕ :
Sn−1 → ∂Ω which belongs to the Sobolev space W 2,p ∩C1(Sn−1,Rn), for p ≥ n− 1.
Then

h(Ω) = n− 1.

Note that the behavior of entropy for W 2,p boundaries for p < n− 1 is still com-
pletely open. From the Sobolev embedding theorem, if p > n − 1, the assumption
on C1-regularity is superfluous.

1.5. Outline of the proof and plan of the paper. The proofs of theorems 4 and
theorem 6 are completely independent but both have an intense flavor of geometric
measure theory.

Sections 2 and 3 are devoted to Ahlfors regularity and the proof of theorem 4,
while sections 4 and 5 deal with Sobolev regularity and the proof of theorem 6.

The proof of the first main theorem follows two steps. First, we define and
compute the volume entropy of some reference Ahlfors α-regular convex sets, called
Cantor-Lebesgue convex sets and constructed with the familiar Cantor-Lebesgue
”the devil’s staircase” map. Those convex sets are defined in section 2 and the
entropy computation is achieved in paragraph 3.1. The second stage of the proof
is a comparison argument: taking an arbitrary Ahlfors α-regular convex set, we
show that its volume entropy is the same as the entropy of the Cantor-Lebesgue
convex set of same regularity. Ahlfors α-regular maps have a well-defined weak
second derivative, which is a measure supported on a Cantor set. In order to
compare the volume entropies of the convex domains, we first need to compare the
associated Cantor sets. To this end, we use and generalize the main theorem of
[MS09] in paragraph 3.2 and we show that the Cantor sets can be related by an
order preserving bi-Lipschitz map. The conclusion follows in paragraph 3.3.

The second theorem is very close to the main theorem of [BBV10], the novelty
here is concentrated in lemma 31. Consequently we follow the same outline for the
proof. The first step is to show that the (suitably renormalized) Busemann function
σ(p) converges to the curvature of the boundary as p approaches the boundary. As
in [BBV10], the main argument lies in the work of D. Alexandroff [Ale39]. This
convergence is pointwise almost everywhere in [BBV10] and L1 in this paper (we
chose p ≥ n− 1 so that this L1 convergence makes sense). We then apply Lebesgue
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Dominated Convergence theorem to deduce that the renormalized volume of balls
converge to the so-called centro-projective area (see paragraph 4.2) which the reader
may think of as the total curvature of the boundary. The key lemma 31 is specific
to the Sobolev regularity context and guarantees the conditions of the Dominated
Convergence Theorem.

1.6. Acknowledgement. The authors would like to thank Constantin Vernicos,
and Marc Troyanov for helpful discussions, as well as anonymous referees for greatly
helping us improve the exposition of this paper.

2. Preliminaries I: Ahlfors regularity and Cantor-Lebesgue domains.

2.1. Ahlfors regularity.

Definition 7. (1) Let (X, d, µ) be a metric measure space. We say that it is
Ahlfors α-regular if there exists a constant C > 0 such that, for any x ∈ X
and any r > 0,

1

C
rα 6 µ(B(x, r)) 6 Crα.

(2) Let ϕ : [0, 1] → R be a non-decreasing continuous map and let µ be its
derivative in the sense of distributions, seen as a measure. We denote by X
the support of this measure. We say that ϕ is Ahlfors α-regular if (X, |·| , µ)
is Ahlfors α-regular.

Lemma 8. Let ϕ : [0, 1]→ R be a continuous function, µ its derivative and X the
support of µ. The function ϕ is Ahlfors α-regular if and only if, there exists C > 0,
such that for any s, t ∈ X whith ϕ(s) 6= ϕ(t), we have

1

C
|t− s|α 6 |ϕ(t)− ϕ(s)| 6 C |t− s|α .

This lemma explains why we claimed in the introduction that α-Ahlfors regular
maps are thought as maps of regularity Cα which are not more regular whenever
the second derivative is positive.

Proof: This follows from the very definition of the derivated measure:

µ([s, t]) = ϕ(t)− ϕ(s).

�

Throughout the rest of this section we fix a parameter p ∈ ]2,+∞[. We now
describe the construction and the useful properties of the Cantor-Lebesgue domains
Ωp. In particular we show that the weak second derivative is supported on a log 2

log p -

regular set.
2.2. Construction of Cantor-Lebesgue domains.

The Cantor-Lebesgue map is constructed inductively. We start with the identity
function f0 : x 7→ x, then inductively define

fn : [0, 1]→ [0, 1]

x 7→


fn−1(px)

2 x < 1
p

1
2

1
p ≤ x <

p−1
p

fn−1(px−1)
2 + 1

2
p−1
p ≤ x.

The following facts are well known:
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f0

(1, 1)

1

1

0
x

y

(a) Step 0

f1

0 1
p

1− 1
p

1

1
2

1
(1, 1)

x

y

(b) Step 1

0 1
p 1− 1

p 1

1
2

1
(1, 1)

1
p2

1
p− 1

p2

1
4

1− 1
p+ 1

p2
1− 1

p2

3
4

x

y

(c) Step 2

Figure 3. The sequence (fn)

Lemma 9. (1) The sequence (fn) converges uniformly to a non-decreasing
continuous map f .

(2) The limit map f is log 2
log p -Hölder continuous.

Proof: Let α = log 2/ log p. We suppose inductively that |fn − fn−1| ≤ 2−n p−2
p .

Then by construction |fn+1 − fn| ≤ 2−1|fn − fn−1| ≤ 2n+1 p−2
p . Finally the initial

step

|f1 − f0| ≤
1

2
− 1

p
= 2−1 p− 2

p

is clearly satisfied. Hence (fn) form a uniform Cauchy sequence of continuous maps,
converging to some function f .

Now suppose p−k−1 ≤ |x− y| ≤ p−k. Consider

|f(x)− f(y)| ≤ |fk(x)− fk(y)|+ 2 · 21−k p− 2

p
.

The biggest gap of two points separated by distance p−k for fk is 2−k. Consequently

|fk(x)− fk(y)| ≤ 2−k.

And finally

|f(x)− f(y)| ≤ 5 · 2−k ≤ 10p−α(k+1) ≤ 10|x− y|α.
�

2.3. A probability measure on the Cantor set.
The function f is continous and, as such, it has a weak derivative. It is a Borel

measure µ given by

µ([a, b]) = f(b)− f(a),

Since (fn) converges uniformly, we can also view µ as the limit of the sequence (µn)
of derivatives of the fn’s. The supports of the measures µn are decreasing. Then

Supp(µ) =
⋂
n

Supp(µn)

is a Cantor set. We denote this Cantor set by Cp.

Lemma 10. The measure µ is log 2
log p -Ahlfors regular.
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Proof: By virtue of being Hölder continuous, we have the upper bound for Ahlfors
regularity. To prove the lower bound, let x ∈ Cp; it can be written as the countable
intersection of closed intervals {x} =

⋂
n In,kn of size p−n. By construction the

measure µ applied to any Cantor interval of size p−n yields 2−n. Hence for 2p−n ≤
r < 2p1−n we have

µ(B(x, r)) ≥ 2−n ≥ (2p)−αrα.

With lemma 8 above, this also shows that f is log 2
log p -Ahlfors regular. �

Now we can explicitly construct the domains. Consider the map eiπf . Its values

give unit vectors in R2. If we define γ(t) =
∫ t

0
eiπf , this a curve. If we take a second

copy and rotate by π around the point (γ(0) + γ(1))/2, we obtain the boundary
of a set, which is convex by the monotonicity of f . This explicitly defines a map
F : R/Z ∼= S1 → C ∼= R2 by

f : t 7→
{∫ t

0
exp(iπf(2τ)) dτ 0 ≤ t < 1/2∫ 1/2

0
exp(iπf(2τ)) dτ −

∫ t−1/2

0
exp(iπf(2(τ) dτ 1/2 ≤ t < 1

and extending periodically.
This set is the Cantor-Lebesgue domain. Throughout the rest of this text, we

denote this set by Ωp.

Definition 11. Let Ω be a convex relatively compact set of R2. We say that Ω (or
sometimes ∂Ω) is Ahlfors α-regular if ∂Ω could be written locally as the graph of
a C1 function ϕ : R→ R whose derivative is an Ahlfors α-regular map.

Note that, in this case, the curvature measure of Ω (see the definition at the
beggining of paragraph 4.2) is a Ahlfors α-regular measure supported on a Cantor
set of dimension α. Be aware that the definition of Ahlfors α-regularity refers to
the weak second derivative and not the first (the notation Ahlfors 1 + α-regular
seems too much misleading).

3. Entropy of Hilbert geometries whose boundaries are Ahlfors
regular

3.1. Entropy of the Cantor-Lebesgue domains.

Theorem 12. For every p ∈]2,∞[ the Cantor Lebesgue domain Ωp has entropy

ent(Ωp) =
2α

1 + α

where α = log 2/ log p

Remark 13. By theorem 2.14 in [BBV10], as a corollary of the co-area inequalities,
the authors show that the entropy is also given by the asymptotic exponential
growth rate of volume of spheres. Hence, from now on, we focus of computing the
length of the circles of radius R and the exponential growth of this length will give
the entropy. In fact by Lemma 3 in [CV04] we can consider the length of the scaled
boundary η∂Ω (η < 1), which we do.

Lemma 14. Let Ω ⊂ R2 be a convex domain containing the origin. Then

H1(η∂Ω) =
1

2
η

∫
S1

1

|ηγ(θ)− F+(θ, η)| +
1

|ηγ(θ)− F−(θ, η)| |dγ| dθ.
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where F+(θ, η) is the point on ∂Ω given by the intersection of the tangent line at
ηγ(θ) of η∂Ω and ∂Ω, in the positive orientation, and F− is that in the negative
orientation.

Proof: This is just a direct calculation of the length with the Hilbert norm of the
curve

θ 7→ ηγ(θ),

which is given by∫
S1

‖γ̇‖θ dθ =

∫
S1

1

2

(
1

|ηγ(θ)− F+(θ, η)| +
1

|ηγ(θ)− F−(θ, η)|

)
η|γ̇(θ)| dθ.

�

We will assume that our map γ : S1 → ∂Ω has unit speed. Let ϕ(θ) denote the
generating function; so that:

γ(θ) =

∫ θ

0

eiϕ(s)ds.

Lemma 15. Let Ω ⊂ R2 be a convex domain whose boundary generating function
ϕ is given by the cumulative distribution function of an Ahlfors α-regular measure
for some 0 < α < 1, and let X denote the support of this measure, then there is a
number c such that for every θ

c−1 1 + o(1)

dist+(θ,X) + (1− η)1/(α+1)

≤ |F+(θ, η)− ηγ(θ)|−1

≤ c 1 + o(1)

dist+(θ,X) + (1− η)1/(α+1)

as η → 1.

Convention 16. In the following proof and throughout the rest of this text, for
a convex set Ω, and a point x ∈ ∂Ω, ν(x) denotes the unit inner normal of Ω and
based at x.

Proof: Let η be fixed once and for all. For each θ we want to find the point forward
F+(θ, η) belonging to both the tangent line at ηγ(θ) of ηΩ and the boundary of
the convex set Ω. Hence F+(θ, η) = γ(θ + h) for some h > 0 and is characterized
by the fact that 〈ηγ(θ), ν(γ(θ))〉 = 〈γ(θ + h), ν(γ(θ))〉, i.e.

〈(η − 1)γ(θ), ν(γ(θ))〉 = 〈[γ(θ + h)− γ(θ)], ν(γ(θ))〉

= 〈eiϕ(θ)

∫ h

0

ei(ϕ(θ+t)−ϕ(θ)) dt, ν(γ(θ)〉

=

∫ h

0

sin(ϕ(θ + t)− ϕ(θ)) dt.
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Now we use the Taylor approximation to sin to yield∫ h

0

[ϕ(θ + t)− ϕ(θ)]− 1

6
[ϕ(θ + t)− ϕ(θ)]3 dt

≤
∫ h

0

sin(ϕ(θ + t)− ϕ(θ)) dt

≤
∫ h

0

ϕ(θ + t)− ϕ(θ) dt.

The generating function ϕ is the cumulative distribution function of an Ahlfors
α-regular measure on X, where α = log 2/ log p. Consequently, there is a number
c1 ≥ 0 such that θ ∈ [0, 2π] \X, and 0 ≤ t ≤ 1/2 we have

c−1
1 max{t− dist+(θ,X), 0}α ≤ ϕ(θ + t)− ϕ(θ) ≤ c1 max{t− dist+(θ,X), 0}α

Now we apply this to the previous bound to get for h < dist+(θ,X) that the
integral is zero, and for h ≥ dist+(θ,X)∫ h

0

sin(ϕ(θ + t)− ϕ(θ)) dt

>
∫ h−dist+(θ,X)

0

(
c−1
1 sα − s3α/6

)
ds

> c−1
1 ([h− dist+(θ,X)]α+1/(α+ 1)− [h− dist+(θ,X)]3α+1/(3α+ 1))

> c2([h− dist+(θ,X)]α+1,

and ∫ h

0

sin(ϕ(θ + t)− ϕ(θ)) dt ≤ c1[h− dist+(θ,X)]α+1/(α+ 1).

Now if we can bound h such that∫ h

0

sin(ϕ(θ + t)− ϕ(θ)) dt = (1− η) 〈γ(θ), ν(θ)〉 ,

but by virtue of convexity the scalar product to the normal to ∂Ω with the position
is bounded above and below away from 0: there is a number c3 such that for every
θ ∈ [0, 2π]

c−1
3 ≤ 〈γ(θ), ν(θ)〉 ≤ c3.

Consequently

(1− η)c−1
3 ≤ c1[h− dist+(θ,X)]α+1/(α+ 1),

and so

(1− η)1/(α+1)c4 + dist+(θ,X) ≤ h,
and

[h− dist+(θ,X)]α+1c2 ≤ c3(1− η),

so consequently

dist+(θ,X) + c4(1− η)1/α+1 ≤ h ≤ dist+(θ,X) + c5(1− η)1/(α+1).

Now we must estimate

|ηγ(θ)− γ(θ + h)| = (1− η) 〈γ(θ), T (θ)〉+

∫ h

0

cos(ϕ(θ + t)− ϕ(θ)) dt
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We can estimate 1/2 ≤ cos(x) ≤ 1 for x ∈ [0, 1/2] and we bound 〈γ(θ)T (θ)〉 ≤ 1.
Then we arrive at

1

2

[
dist+(θ,X) + c4(1− η)1/(α+1)

]
− (1− η)

≤ |ηγ(θ)− γ(θ + h)|
≤ dist+(θ,X) + c5(1− η)1/(α+1) + (1− η)

If we invert everything we get the result. �

The previous lemma applies whether θ belongs to the support X of the measure
or not; but in the following proof, we may only apply it for θ /∈ X.

We note that a similar result holds for F−(θ, η).

Proof of theorem 12: Now we take advantage of the fact that the standard
measure on the Cantor-Lebesgue set is Ahlfors α-regular for α = log(2)/ log(p). We
consider a division of the complement of X into a union of intervals of progressively
smaller sets. At generation N the size of the sets is (p− 2)p−N , and there are 2N

of them. Now we note that for an antipodal set B(0, R) is given by tanh(R)∂Ωp.
Using tanhR = 1− e−2R +O(e−4R) and setting η = tanh(R) yields

1

| tanh(R)γ(θ)− F+(θ, η)| ∼
1 + o(1)

dist+(θ,X) + e−2R/(α+1)
.

Because all terms uniformly constant in R will converge to 1 as we take the 1/R
power, it is suffiction to consider∫ 2π

0

dθ

dist+(θ,X) + e−2R/(α+1)
.

Now we can break this sum into the generations to yield∫ 2π

0

1

dist+(θ,X) + e−2R/(α+1)
dθ =

∞∑
N=1

2N
∫ (p−2)p−N

0

1

x+ e−2R/(α+1)
dx

=

∞∑
N=1

2N log

(
1 +

(p− 2)e
2R
α+1

pN

)
.

In order to proceed we will have to estimate the sum by splitting it in two. Let

β =
1

(α+ 1) log p
=

1

log 2 + log p
.

We investigate separately the sum over indices N where N < 2Rβ and where
N ≥ 2Rβ. Indeed

∞∑
N=1

2N log

(
1 +

(p− 2)e
2R
α+1

pN

)
=

∞∑
N=1

2N log
(
1 + (p− 2)p2Rβ−N)

and the two split sums will have very different asymptotic behaviour.
∞∑
N=1

2N log
(
1 + (p− 2)p2Rβ−N)

=
∑

N<2Rβ

2N log
(
1 + (p− 2)p2Rβ−N)+

∑
N≥2Rβ

2N log
(
1 + (p− 2)p2Rβ−N) .
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We estimate the first term below coarsely∑
N<2Rβ

2N log
(
1 + (p− 2)p2Rβ−N) ≥ 0

And from above we estimate coarsely (if x > 1, then log(1 + x) 6 1 + log x):∑
N<2Rβ

2N log
(
1 + (p− 2)p2Rβ−N)

6
∑

N<2Rβ

2N (1 + (2Rβ −N) log p+ log(p− 2))

6
∑

N<2Rβ

2N (1 + 2Rβ log p+ log(p− 2))

6 2b2Rβc+1 (1 + 2Rβ log p+ log(p− 2))

Now for the second term, we first use the approximation log(1 + x) ≤ x for any x.
We have ∑

N>2Rβ

2N log
(
1 + (p− 2)p2Rβ−N) ≤ p2Rβ(p− 2)

∑
N>2Rβ

(2/p)N

≤ (p− 2)(2/p)2Rβp2Rβ

= (p− 2)22Rβ ,

For the lower bound, we want to use and x/2 ≤ log(1 + x) for |x| < 1. If 2Rβ is
an integer, the first term of the sum is log(1 + (p− 2)) and p− 2 is not necessarily
smaller than 1. To avoid this situation we split again the sum into two parts and
take off the two first terms.∑

N>2Rβ

2N log
(
1 + (p− 2)p2Rβ−N) >

∑
N>2Rβ+2

2N log
(
1 + (p− 2)p2Rβ−N)

>
(p− 2)p2Rβ

2

∑
N>2Rβ+2

(
2

p

)N

=
(p− 2)p2Rβ

2

p

p− 2

(
2

p

)2Rβ+3

= 22Rβ+2p−2.

The very same argument applies for F− instead of F+. Consequently we have a
two-side bound:

H1(∂B(0, R)) ≤ (p− 2)22Rβ + 2b2Rβc+1 (1 + 2Rβ log p+ log(p− 2))

and

H1(∂B(0, R)) ≥ 22Rβ+2p−2.

If we take the Rth root and let R go to infinity we arrive at

lim
R→∞

(H1(∂B(0, R)))
1/R

= 22β = e2 log 2/(log 2+log p) = e2α/(α+1).

Taking the logarithm yields the result. �

We now come to the general case of a general Ahlfors α-regular convex set (recall
definition 11). The aim of the rest of this section is to prove the first main theorem,
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Theorem 17. Let Ω be a 2-dimensional Ahlfors α-regular convex set. Then its
volume entropy satisfies

h(Ω) =
2α

α+ 1
.

3.2. Comparison of Ahlfors regular sets. In this section, we compare Ahlfors
regular Cantor sets. Let us start by fixing notations. We denote by κ an Ahlfors
s-regular measure supported on an Ahlfors s-regular set E. In the next paragraph
we will apply our result below where κ is the curvature measure of a α-regular
Cantor set.

We denote a standard Cantor set (instead of Cantor-Lebesgue Cantor set) by
Ct. By definition, such a Cantor set is obtained as the support of the derivative of
a Cantor-Lebesgue function which is Ahlfors t-regular.

Theorem 18 (ordered s-regular embeddings). Let E be a totally ordered s regular
set. Let F be a totally ordered t regular set. Assume one of the two regular sets is
a standard Cantor set. If s < t, there is an order preserving bi-Lipschitz embedding
ϕ : E → F whose constants depend only on the diameters of E and F , their Ahlfors
constants, and t and s.

Remark 19. This statement is an extension of the theorem 3.3 in [MS09]. Here
we add the fact that we can choose the bi-Lipschitz map ϕ to be order-preserving.
Note that our proof uses the result of [MS09].

Starting with the map f : E → F given by theorem 3.3 of [MS09], we proceed
as follows

(1) We first construct binary trees for which E and F are topological boundaries
of the trees. The construction is inspired by a paper of F. Choucroun
[Cho94] but is not quite the same.

(2) We choose an (incomplete) metric on the tree so that the associated metric
(completion) on the boundary is bi-Lipschitz equivalent to the original met-
ric on the Cantor set, given as a subset of R. The fact that every Cantor
set is bi-Lipschitz equivalent to the metric boundary of some binary tree
seems new.

(3) We then extend the given map f by a bi-Lipschitz map f̃ between the trees.
(4) We finally compose f with an automorphism of the standard tree to reorder

the boundary.

Step one : construction of the binary tree
Let E be an ordered Ahlfors α-regular set. As being closed, we can write the

complement of E as a disjoint union of open intervals:

Ec =

∞⋃
i=1

Ii.

On the Ii = [ai, bi], we give the order such that bi − ai > bi+1 − ai+1 and, if
bi − ai = bi+1 − ai+1, then bi < ai+1.

Set A0 = [0, 1] and, for k > 0,

Ak = [0, 1] \
k⋃
j=1

Ij .
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We note that Ak is a disjoint untion of k + 1 closed intervals, denoted vk0 , · · · , vkk .
Let us consider

Vn =

n⋃
k=0

{
vk0 , · · · , vkk

}
.

We build a finite tree for which the vertices are the elements of Vn. We now
describe the set of edges. We first remark that the union defining Vn is not disjoint:
passing from Ak to Ak+1 creates a hole in one of the vki . So precisely there are

in
{
vk+1

0 , · · · , vk+1
k+1

}
exactly 2 new elements and there is precisely one element in{

vk0 , · · · , vkk
}

not in {vk+1
0 , · · · , vk+1

k+1}. Hence there exist αk ∈
{
vk0 , · · · , vkk

}
and

β1
k, β

2
k ∈

{
vk+1

0 , · · · , vk+1
k+1

}
such that{

vk+1
0 , · · · , vk+1

k+1

}
=
{
vk0 , · · · , vkk

}
\ {αk} ∪

{
β1
k, β

2
k

}
and the union is disjoint. For each k, we place two edges:

[
αk, β

1
k

]
and

[
αk, β

2
k

]
.

We get a finite binary tree Tn. Finally we consider the R-tree T =
⋃∞
n=0 Tn. If

needed we put the Cantor set in the notation and denote the tree by TE .

Claim Every vertex has exactly two descendants.

Proof: From the construction, it is obvious that each vertex has either 0 or 2
descendants. Suppose there exists vki with no descendant. Then vki ⊂ E and E is
not totally discontinuous; a contradiction. �

Let us now endow the binary tree T with a metric. Given a vertices vki and vlm,
we define the distance between them to be the size |v| of the smallest closed interval
which contains both of them. This metric is incomplete, the vertices accumulate
on the boundary which is at finite distance (one) to the basepoint v0

0 . We denote
by dT the metric on ∂T induced by the completion of the metric described above.

Step two : comparison of metrics on the regular set

Theorem 20. The tree metric dT and Euclidean metric d are bi-Lipschitz equiva-
lent on E.

Proof: The proof will proceed in several parts. First we will show that Ahflors
regularity implies that for a given vertex v in our tree with descendents u and
w, it follows that there is a number K > 0 which depends only on s and the
proportionality constants of s-regularity, such that

max{|u|, |w|, |v| − |u| − |w|} ≤ K min{|u|, |w|, |v| − |u| − |w|}.
This requires judicious application of the Ahlfors regularity, and a Vitali covering
argument.

First we will prove that every closed interval u contains a ball of radius |u|/4.
First suppose the open interval I contained in u is bigger than |u|/3. It follows that
I is smaller or equal in size to any other open interval, so the open intervals on
either side of u are bigger in length than |u|/3. Now u = v∪ I ∪w. Without loss of
generality assume that |v| ≥ |w|. Then let v = [a, b] so that B(b, |u|/3)∩E ⊂ u∩E.
Now suppose |I| < |u|/3. Without loss of generality we may assume |v| ≥ |u|/3,
and so if v = [a, b] then B(b, |u|/3) ∩ E ⊂ u ∩ E.

As a result we can deduce that

c|u|s/3s ≤ κ(u) ≤ C|u|s
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(recall that κ denotes the curvature measure on the Cantor set). Now consider
some closed interval u = [a, b] with Ik on its left and Il on its right. Without loss of
generality assume that |Il| ≤ |Ik|. We have two cases, either |Il| ≤ |u|, or |Il| > |u|.
If we have the latter then B(b, |Ik|) ∩ E = u ∩ E, and

0 = κ(B(b, |Ik))− κ(u)

≥ c|Ik|s − C|u|s,
which implies

|Ik|
|u| ≤

(
C

c

)1/s

.

Next consider some interval u = v ∩ I ∩ w. Then κ(u) = κ(v) + κ(w) and

κ(u) ≥ c(|v|+ |I|+ |w|)s/3s,
while

κ(u) = κ(v) + κ(w) ≤ C(|v|s + |w|s) ≤ C ′(|v|+ |w|)s.
From this it follows that

|I| ≤ K(|v|+ |w|),
where K dependts only on s, c and C.

Finally cover u in balls of radius |I| and centered in E ∩ u. This is possible,
because |I| is the largest gap in u ∩ E. First we have a finite sub-cover. We can
then take a Vitali cover to yield balls B(xi, |I|), i = 1, . . . n, of disjoint balls, such
that {B(xi, 3|I|) : i = 1, . . . n} covers u. Consequently n ≥ |u|/6|I|. But then

κ(u) ≥
∑
i

κ(B(xi, |I|))

≥ nc|I|s/3s

≥ 3−(1+s)c|u||I|s−1.

Similarly

κ(u) ≤ C|u|s.
From which it follows that

|I|
|u| ≥ K,

where K and C ′ depend only on s,c and C.
It is now clear how we can show that d and dT are bi-Lipschitz equivalent.

Indeed, let x, y ∈ E and let v be the smallest closed interval containing both ot x
and y and w be the biggest open interval contained in [x, y]. We have

1

K
dT (x, y) 6 |w| 6 |x− y| 6 |v| = dT (x, y).

�

Step three : extension of f
We are guaranteed a bi-Lipschitz map from E to Ct for any standard Cantor set

t > s by Theorem 3.3 in [MS09]. Let f denote this function. Let f̃ : TE → TCt be
given by

v 7→ ∩{u ∈ TCt : u ⊃ f(v)}.
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Let I ⊂ f̃(v) be the largest open interval (with possible semantic order) contained

in f̃(v). By construction there are an x, y ∈ v ∩ E such that f(x) and f(y) are
separated by I, so

|I| ≤ |f(x)− f(y)| ≤ C|x− y|,
where C is the bi-Lipschitz constant of the map. But there is a number K which
depends only on t such that |f̃(v)| ≤ K|I|. Now given two vertices u′ and u′′ in TE .
Let J denote the maximal open set separating them. Then |J | ≤ dT (u′, u′′) ≤ |v| ≤
K|J |. Now we know that there is an x ∈ u′ and y ∈ u′′ such that d(x, y) ≥ |J |, and
hence C|f(x)− f(y)| ≥ |x− y| ≥ |J |. Consequently

dT (f̃(u′), f̃(u′′)) ≥ |f(x)− f(y)| ≥ C−1|J | ≥ C−1K−1dT (u′, u′′).

For the reverse inequality, note that we have a K ′ depending only on t, such that
f̃(u′) and f̃(u′′) are separated by a set of size at least (K ′)−1dT (f̃(u′), f̃(u′′)).
Consequently there is an x ∈ u′ and a y in u′′ such that

1

K ′
dT (f̃(u′), f̃(u′′)) ≤ |f(x)− f(y)| ≤ C|x− y| ≤ CdT (u′, u′′).

Step four : reordering
Subsequently, the most useful property of the standard Cantor set is its self

similarity. In particular for the standard Cantor tree TCt with the ultrametric dT ,
if we flip any branch, it is an isometry of the tree TCt , as is any uniform limit
of isometries. Because our tree is binary we can identify each vertex with a word
composed of the letters l and r, for left and right. Now given u and v which are
not descendents we say that u is to the left of v if their minimal closed cover is
w is such that u is in the left branch from w and v is in the right branch. We
proceed inductively on word length. Suppose φn ◦ f̃ preserves the order of the first
vertices with word length less than or equal to n. For each vertex w of word length
n consider its two descendents u and v such that u is to the left of v. If φn ◦ f̃(u)

is to the left of φn ◦ f̃(v) proceed if not then postcompose φn with the branch flip,

which flips the tree at the common vertex of φn◦ f̃(u) and φn◦ f̃(v). This flip leaves
every other descendent pair unchanged because this common vertex is a descendent
of φn ◦ f̃(w). Let φn+1 be the end result.

In this way we construct a sequence of isometries which converges uniformly to a

limit isometry φ. Then f̂ = φ◦ f̃ is a bi-Lipschitz map which preserves the semantic
order. In fact we get the following

Corollary 21. Let E and E′ be s and t regular subsets of [0, 1]. Suppose {0, 1} ⊂ E.
There is an order-preserving map f : [0, 1] → [0, 1] which is bi-Lipschitz on its
image, and such that f(E) ⊂ E′.

Proof: We take a standard Cantor set C with s < τ < t. Then there is an order
preserving bi-Lipschitz map f : E → C and g : C → E′. First we extend f to
[0, 1]. We do this by mapping each open interval I on the complement to the image
of it’s endpoints and scaling linearly. Because the map f is bi-Lipschitz and order
preserving, so is the extended map. By composing the extensions we get the desired
map. �

3.3. Entropy of a domain with curvature an Ahlfors regular measure.
Recall that we dispose of a 2-dimensional convex set Ω, which is Ahlfors α-regular:
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its curvature measure is supported on E, an α-regular Cantor set. We choose t > α
and we let Ct denote the standard Cantor set.

We can express the complement of the support of our measure as a union of open
intervals

Ec =
⋃
j

Ij ,

where Ij =]aj , bj [, with aj , bj ∈ E. We know from the previous paragraph that,
associated to Ct, we have a bi-Lipschitz order preserving map ϕ : E → Ct.

As in the case of standard Cantor set, the lengths of the Finslerian circles of
radius R in Ω are given by a sum of integrals of the form

H1(∂B(0, R)) ∼
∑
j

∫ bj

aj

1

(x− bj) + e−2R/(α+1)
dx

=
∑
j

∫ [bj−aj ]

0

1

x+ e−2R/(α+1)
dx.

=
∑
j

log((bj − aj)e2R/(α+1) + 1).

But |bj − aj | ≤ C|ϕ(bj)− ϕ(aj)|. Consequently we can estimate

log(e2R/(α+1)|bj − aj |+ 1) ≤ log(e2R/(α+1)C|ϕ(bj)− ϕ(aj)|+ 1)

≤
∑

J⊂]ϕ(aj),ϕ(bj)[

log(C|J |e2R/(α+1) + 1)

where I are the open intervals whose disjoint union makes the complement of the
t dimensional cantor set. This last inequality follows from the elementary identity

log(1 + λ+ µ) 6 log(1 + λ) + log(1 + µ)

whenever λ and µ are positive. Because our map is order preserving, we can just
estimate from above (there will be no open intervals appearing more than once in
the image)∑

J⊂Ec
log(1 + e2R/(α+1)|J |) ≤

∑
J⊂Cct

log(1 + Ce2R/(α+1)|J |)

=

∞∑
n=1

∑
|J|= p−2

pn

log(1 + C(p− 2)e2R/(α+1)p−n)

=

∞∑
n=1

2n log(1 + C(p− 2)e2R/(α+1)p−n)

Here p is the real number such that log 2
log p = t = dimCt. Then we proceed as before.

Setting β = 1
(α+1) log p , we break the sum into two parts where either n < 2Rβ or

n > 2Rβ and use the same techniques for bounding above:∑
J⊂Cct

log(1 + Ce2R/(α+1)|J |)

6
∑

n<2Rβ

2n
(
1 + log

(
C(p− 2)p2Rβ−n))+

∑
n>2Rβ

2nC(p− 2)p2Rβ−n
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using for the first term the identity log(1 + x) 6 1 + log x and for the second
log(1 + x) 6 x. The first term (n < 2Rβ) is again∑

n<2Rβ

2n + 2n log(C(p− 2)) + 2n(2Rβ − n) log p.

which we can coarsely bound by

2b2Rβc+12Rβ log p.

For the second term (n > 2Rβ), we have∑
n62Rβ

(
2

p

)n
C(p− 2)p2Rβ 6

(
2

p

)b2Rβc+1

C(p− 2)p2Rβ 6 2b2Rβc+1C(p− 2)

Consolidating terms we get that the integral is bounded by

2b2Rβc+12Rβ log p+ 2b2Rβc+1C(p− 2)

where t = log 2/ log p and K is independent of R. Taking the power of 1/R, the
logarithm and letting R go to infinity yields the entropy bound

Ent(E) ≤ 2t/(α+ 1).

But t is arbitrarily close to α. We obtain the lower bound in the very same way:
we use this time an order preserving map ψ : Cs → E and produce a lower bound
with the same techniques as for the standard Cantor set.

4. Preliminaries II: Sobolev regularity and Busemann functions

4.1. What is a Sobolev-regular convex set ? We recall the we denoted by ν(x)
the unit inner normal, for a point x ∈ ∂Ω.

We clarify the definition of W 2,p convex domains Ω (via charts) and show that
the definition is equivalent to requiring that the boundary can be parametrized by
a map

ϕΩ : Sn−1 → ∂Ω,

of class W 2,p ∩ C1(Sn−1,Rn), which we define to be the space of continuously
differentiable functions f : Sn−1 → ∂Ω ⊂ Rn whose restriction to coordinate charts,
ψ : U ⊂ Sn−1 → Rn−1, denoted by ϕΩ ◦ ψ−1, are in

W 2,p(ψ(U) ⊂ Rn−1,Rn).

We say a domain Ω has regularity W 2,p ∩C1 for p ≥ (n− 1) if for every x ∈ ∂Ω
there is an n− 1 dimensional supporting plane P through x, and open subsets U ′

of P and U of ∂Ω containing x such that U is given by the graph of a function
f ∈W 2,p∩C1(U ′) i.e. for every x there is a U ′ ⊂ Tx∂Ω containing 0, and a function
h : U ′ → R+ ∪ {0} such that the set {z − h(z)ν(x) + x| z ∈ U ′} is a subset of ∂Ω
and contains an open neighborhood of x in ∂Ω.

Note that for p = n − 1, W 2,p(Sn−1) does not embed in C1 which is why we
study parametrizations in W 2,p ∩C1. If p > n− 1, W 2,p(Sn−1) does embed in C1.

We define the barycenter of a domain Ω as the center of mass of the boundary

bc(Ω) =

∫
∂Ω

x dHn−1(x)/Hn−1(∂Ω).

Projecting the unit sphere around the barycenter onto ∂Ω gives a map.

ϕΩ : Sn−1 → ∂Ω



18 JAN CRISTINA AND LOUIS MERLIN

which takes θ ∈ Sn−1 to the point on ∂Ω in the direction θ from bc(Ω) If Ω is a
bounded convex domain then bc(Ω) exists as does ϕΩ.

Lemma 22. Let p ≥ n− 1. The bounded convex domain Ω is C1 ∩W 2,p regular if
and only if the map

ϕΩ : Sn−1 → ∂Ω,

is in the space W 2,p ∩ C1(Sn−1,Rn).

Proof: The map ϕ can be identified with the map ρ : Sn−1 → R+ for which

ϕ(θ) = ρ(θ)θ + bc(Ω).

Then ϕ ∈W 2,p(Sn−1,Rn) is equivalent to ρ ∈W 2,p(Sn−1).
Let h : U ⊂ Tx∂Ω → R be such that {x + z − ν(x)h(z) | z ∈ U} ⊂ ∂Ω. Let x0

denote the barycenter of Ω. Then by assumption h is W 2,p ∩C1(U). Consider the
map

Φ : U ⊂ Tx∂Ω→ Sn−1 ⊂ Rn Φ : z 7→ z + x− h(z)ν(x)− x0

|z + x− h(z)ν(x)− x0|
,

which takes z to ∂Ω along ν(x), and then radially to the unit sphere centered at
x0. This map is C1, as it is a quotient of C1 functions. It is also W 2,p because
it is a product of C1 ∩W 2,p functions and C1 ∩W 2,p is an algebra [Lew71]. Let
ζ = z + x− h(z)ν(x). Consider the derivative

DΦz =
Id− ν(x)dh(z)

|z + x− h(z)ν(x)− x0|

− (z + x− h(z)ν(x)− x0)

|z + x− h(z)ν(x)− x0|
〈z + x− h(z)ν(x)− x0, Id− ν(x)dh(z)〉

|z + x− h(z)ν(x)− x0|
.

This is the composition of this inverse of projection from Tζ∂Ω → Tx∂Ω and the
projection Tζ∂Ω to T(ζ−x0)/|ζ−x0|S

n−1 but because the line from x0 to ζ is trans-
verse to ∂Ω at ζ this projection is invertible. Consequently by the inverse function

theorem Φ−1 is locally C1. Finally let F = η ◦ Φ where η : Û ⊂ Sn−1 → Rn−1 is a
smooth chart. Then we have deduced that F−1 : U ⊂ Rn−1 → Tx∂Ω is locally C1.
Now consider for a C1 diffeomorphism between open subsets of Rn−1:

D(F−1)(x) = (DF )−1(F−1(x)),

where (DF )−1 is the matrix inverse of DF . This is a composition of continuous
functions, so is continuous. Now taking the derivative with respect to a vector X
in Rn−1

DXD(F−1)(x) = DF−1
F−1(x) · (DDF−1

x X ·DFF−1(x))DF
−1
F−1(x)

where we have used the fact

D(A−1(x)) = A−1(x) ·DA(x) ·A−1(x)

for any invertible matrix valued function A : U ⊂ Rn−1 → GL(d). The change
of variables is at least a C1 diffeomorphism and the matrices DF and DF−1 are
continuous (and hence bounded). This imply that DXD(F−1)(x) is bounded uni-
formly almost everywhere by ‖DF‖∞‖DF−1‖∞|D2F |. This is valid for any C2

approximation of F , and so passing to the limit is valid for F [Eva98, Chap. 5].
And so if |D2F | ∈ Lp(Tx∂Ω) then D2(F−1) is locally in Lp(Rn−1). Finally the
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map ϕ is the composition of Θ : z 7→ z + x − h(z)ν(x) and Φ−1 which are both
C1 ∩W 2,p i.e.

ϕ = Θ ◦ (Φ−1)

on the set Φ(U) ⊂ Sn−1. Furthermore Φ is a C1 ∩W 2,p diffeomorphism. Hence
the composition is C1 ∩W 2,p.

For the reverse implication, let x be a point in ∂Ω. Then consider the map
Ψ = ΠTx∂Ω ◦ ϕ where ΠTx∂Ω with orthogonal projection onto the tangent plane at
x of ∂Ω. By a similar chain of reasoning Ψ is in W 2,p ∩ C1(Sn−1, Tx∂Ω) and is
locally invertible around ϕ−1(x). By a similar argument to the forward implication,
it too is in W 2,p ∩C1. Then h(z) is given by 〈(ϕ ◦Ψ−1)(z), ν(x)〉 − 〈x, ν(x)〉 which
is a composition of W 2,p ∩ C1 functions which is W 2,p ∩ C1, [Pal68]. �

4.2. The curvature measure and the centro-projective area for the Sobolev
regularity.

Let Ω be a convex compact set. Convex domains naturally have some regularity.
They are automatically Lipschitz regular, and twice differentiable almost every-
where but in addition we can define a set valued Gauss map for the boundary of
any domain. For every x ∈ ∂Ω and ν ∈ Sn−1, we consider the halfspace

H(x, ν) = {y : 〈x, ν〉 ≤ 〈ν, y〉}
and then we set

G(x) =
{
ν ∈ Sn−1 such that H(x, ν) ∩ int(Ω) = ∅

}
.

This allows us to define a Gauss curvature measure on ∂Ω by

κ(A) = µ(
⋃
x∈A

G(x)),

where µ is the usual measure on the sphere. For a C2 domain the measure corre-
sponds with the change of variables formula

κ(A) =

∫
A

detDG(x) dx.

Already the C2 assumption implies that the entropy of a domain is n − 1. In
[BBV10] this supposition was weakened to C1,1. If one weakens the asumption
to W 2,p for p ≥ n − 1, we still have a well defined Gauss curvature. Indeed, the
determinant of the Gauss map detDG belongs to L1 because p ≥ n− 1 > n−1

2 .
Assume now that the origin o of Rn belongs to Ω (this is no restriction) and let

a : ∂Ω → R be the positive function such −a(p)p ∈ ∂Ω (see the introduction of
[BBV10]). For instance if o is a center of symmetry of Ω, then a is just the constant
1. The letter a stands for antipodal function. We can now recall the definition of
the centro-projective area in the following way.

Definition 23 (centro-projective area). Let Ω be a convex set such that ∂Ω is
parametrized by a map in W 2,p ∩ C1(Sn−1). The centro-projective area is defined
as

A(Ω) =

∫
∂Ω

2a
√

detDG(x)

((1 + a)〈ν(x), x〉)
n−1
2

dL(x)

Lemma 24. Let Ω be a convex domain of class C1 ∩W 2,p for p ≥ n− 1. Then the
centro-projective area is nonzero

A(Ω) > 0.
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Proof: The goal is to show that the Gauss map G is of class W 1,n−1 ∩ C0. In
this case by the change of variables formula [IM01, Theorem 6.3.2] yields∫

Sn−1

detDG(θ) dθ = |Sn−1|.

Thus detDG is nonzero on a set of positive measure. Furthermore, by convexity
and Alexandrov’s theorem on twice differentiability detDG is non-negative almost
everywhere. Consequently so is

√
detDG, and hence A(Ω) > 0.

To see that G is in C0 ∩W 1,n−1 let ψ : ψ−1(U) ⊂ Sn−1 → U ⊂ Rn−1 be a
coordinate chart. Let Φ : U → ∂Ω be the map x 7→ ϕ(ψ(x)). By Lemma 22 it is of
class C1∩W 2,p. Consequently for an orthonormal frame of vector fields X1, . . . , Xn

the function

DxΦ(X1) ∧ · · · ∧DxΦ(Xn−1),

is of class C0 ∩W 1,n−1 as is

x 7→ ?(DxΦ(X1) ∧ · · · ∧DxΦ(Xn−1))/|DxΦ(X1) ∧ · · · ∧DxΦ(Xn−1)|,
where ? is the hodge star, because C0∩W 1,n−1 is an algebra [Lew71, Theorem 2.1].
But this is the Gauss map. �

4.3. Some general facts about Busemann functions. Let us start by an ele-
mentary fact.

Lemma 25. Let S be a bounded star-shaped domain of Rn with 0 as a star and
with a C1 boundary. Hence there is a parametrization of S given by

Φ : B(0, 1) −→ S
x 7−→ xϕ( x

|x| )

where ϕ is a real valued function on Sn−1. Then

Vol(S) =

∫
Sn−1

ϕ(x)ndx

This will be very useful for computing the Euclidean area of a Finslerian ball
(hence evaluationg the Busemann function).

For the rest of this paragraph, we now suppose that there exists an R such that
∂Ω is a graph over B(p,R) ∩ Tp∂Ω of height at most λ0 for every p ∈ ∂Ω. This
follows from C1 regularity of the boundary (and hence uniform continuity of the
derivative. Let ϕp : Tp∂Ω → ∂Ω be this function. We denote by ν(p) the inner
normal to the boundary at p. We also consider hp = 〈ϕp − p, ν(p)〉 the height of
ϕ(p) in the direction of ν(p).

Let Ωp,λ denote the set {y ∈ Ω, 〈y, ν(p)〉 ≥ λ〈p, ν(p)〉} for λ ≤ 1 and p ∈ ∂Ω.
By C1 regularity we have that for every α > 0 there is λ0 which is independent

of p, such that the cone Cα,p = {y | 〈p− y, ν(p)〉 ≥ α|y − p|} is included in Ωp,λ0
.

Lemma 26. Let λ0 be small enough such that the cone Cα,p is contained in Ωp,λ0

for some α ≤ 〈p/|p|, ν(p)〉/2, and every p. Then there is a number C which depends
on the C1 norm of ∂Ω such that for every p and every λ ≤ λ0,

σ(λp) ≤ Cσ(p− 〈(1− λ)p, ν(p)〉ν(p)).

Proof: Let q1 = λp and let q2 be in the normal direction to Tp∂Ω:

q2 = p− 〈(1− λ)p, ν(p)〉ν(p).
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p

q2

Figure 4. Notations of the sets involved for the local study around p

Let c be a positive number such that for every p ∈ ∂Ω B(q1, λc) ⊂ Cα,p∩Ωp,λ and
B(q2, (λ)c ⊂ Cα,p ∩ Ωp,λ, and hence both balls are contained in Ω. The existence
of such a c is given by the fact that we can fit a cone inside Ωp,λ0 .

Now for any q ∈ ∂Ω ∩ Ωp,λ,

|q − q1| ≤ |q − q2|+ |q1 − q2|

And so

|q − q1|
|q − q2|

≤ 1 +
|q1 − q2|
|q − q2|

,

But because we can fit balls of radius c(λ) around both qi, and because |q1 − q2| ≤
|λ| supp | < ν(p), p〉 ≤ |λ|, it follows that there is a C ′ such that

|q − q1|
|q − q2|

≤ C ′ and similarly
|q − q2|
|q − q1|

≤ C ′.

Now consider the half spheres S+
ν(p)(qi) ⊂ TqiΩ (i = 1, 2) defined by

S+
ν(p)(qi) = {v ∈ Tqi ‖v‖ = 1 and 〈v, ν(p)〉 6 0} .

To compare the Busemann density at the points q1 and q2, we introduce the change
of variables S+

ν(p)(q1) → S+
ν(p)(q2) obtained by first mapping v to its projection

(through q1) on the boundary of Ω and then project it onto the Euclidean unit
sphere centered at q2. We now show that this change of variables is bi-Lipschitz.

Let v1 and v2 be two elements in Tq1 . Let γ : [0, θ]→ S+
ν(p)(q1) be the great arc

connecting v1 and v2. Let π1 be the projection from the unit sphere centered at q1,
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to ∂Ω and let π2 that from q2. Consequently, if η = π1 ◦ γ, we have

γ =
η − q1

|η − q1|
and

π−1
2 ◦ π1 ◦ γ =

η − q2

|η − q2|
.

Then

|γ̇| =
√
|η̇|2
|η − q1|

+
〈η̇, η − q1〉2|η − q1|2

|η − q1|6
− 2
〈η − q2, η̇〉2
|η − q1|4

=
|η̇|

|η − q1|2
√
|η − q1|2 − 〈η̇/|η̇|, η − q1〉2.

It turns out that
√
|η − q1|2 − 〈η̇/|η̇|, η − q1〉2 is the norm of Πη̇⊥(q1 − η) (Πη̇⊥

denotes the orthogonal projection on the hyperplane perpendicular to η̇⊥). The
vector q1 −Πη̇⊥(q1 − η) is in the tangent hyperplane at η, hence Πη̇⊥(q1 − η) has a
norm greater than cλ (the size of the ball we can fit around q1). Now the key point
is that |(q1 − q2)| ≤ |λ|. We can apply a similar argument to bound d

dtπ
−1
2 ◦ η, and∣∣ d

dtπ
−1
2 ◦ π1 ◦ γ

∣∣
|γ̇| =

|η − q1|2
|η − q2|2

|Πη̇⊥(η − q2)|
|Πη̇⊥(η − q1)|

6
|η − q1|2
|η − q2|2

|Πη̇⊥(η − q1)|
|Πη̇⊥(η − q1)| +

|η − q1|2
|η − q2|2

|Πη̇⊥(q1 − q2)|
|Πη̇⊥(η − q1)|

6 C ′2 +
|η − q1|2
|η − q2|2

|q1 − q2)|
|Πη̇⊥(η − q1)|

6 C ′2 +
C ′2

c
.

We denote by C, the number C ′2 + C′2

c . Hence

d(π−1
2 ◦ π1 ◦ γ(θ), π−1

2 ◦ π1 ◦ γ(0)) ≤ Cd(γ(θ), γ(0)).

But by a similar argument

d(π−1
2 ◦ π1 ◦ γ(θ), π−1

2 ◦ π1 ◦ γ(0)) ≥ C−1d(γ(θ), γ(0)).

Finally we open up σ(q1):

σ((1− λ)p)/ωn

=

(
2

∫
S+
ν(p)

(q1)

( |ϕq1(v)||ϕq1(−v)|
|ϕq1(v)|+ |ϕq1(−v)|

)n
dv

)−1

6 C2(n−1)

(∫
S+
ν(p)

(q2)

( |ϕq2(π−1
2 ◦ π1(v))||ϕq2(π−1

2 ◦ π1(−v)|
|ϕq2(π−1

2 ◦ π1(v)|+ |ϕq2(π−1
2 ◦ π1(−v)|

)n
dv

)−1

6 C3n−2

(∫
S+
ν(p)

(q2)

( |ϕq2(w)|ϕq2(−w)|
|ϕq2(w)|+ |ϕq2(−w)|

)n
dw

)−1

6 C3n−2σ(q2)/ωn.

�
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Lemma 27. Let Ω be a convex set, Let x be a point on the boundary of Ω, with
inner normal ν(x). Let ϕλ be the projection of the unit ball centered at x + λν(x)
to the boundary of Ω. Assume that, for all v ∈ S+

ν(x)(x),

d(x+ ν(x), ϕλ(v)) ≤ Cd(x+ ν(x), ϕλ(−v)).

Then

σ(x− λν(x)) ≤ (C + 1)|Ωx,λ|.
Proof: We note that

|Ωx,λ| =
∫
S+
ν(x)

|ϕλ(v)|n dv,

σ(x− λν(x)) =

(
2

∫
S+
ν(x)

(x)

( |ϕ(v)||ϕ(−v)|
|ϕ(v)|+ |ϕ(−v)|

)n
dv

)−1

and
|ϕ(v)||ϕ(−v)|
|ϕ(v)|+ |ϕ(−v)| ≥

|ϕ(v)||ϕ(−v)|
(C + 1)|ϕ(−v)| ≥ |ϕ(v)|/(C + 1).

�

5. Centro-projective area for the Sobolev class

The goal of this section is to prove the second main theorem:

Theorem 28. Let Ω be an open convex relatively compact subset of Rn such that
the boundary has a regularity W 2,p ∩ C1 for some p ≥ n − 1. Then the Finsler
volume growth entropy of Ω is maximal, equal to n− 1

Let us first remark that we have the Sobolev embedding theorem stating that the
boundary has also regularity C1, so that lemma 26 can be applied in this situation.

This statement echoes the main result of [BBV10] for which the regularity as-
sumption is C1,1 (hence W 2,∞). In fact the proof largely follows their proof: there
are two crucial steps in the proof of the main theorem of [BBV10] that need to be
worked out in this context. Precisely we want to show that

(1) As a point p ∈ Ω approaches the boundary, the Busemann density (suitably

renormalized) converges almost everywhere to
2a
√

detDG(p)

((1+a)〈ν(p),p〉)
n−1
2

. This will

be achieved in lemma 29.
(2) We then want to use this convergence to replace the volume of balls by

the centro-projective area (i.e use the Lebesgue Dominated Convergence
theorem). This requires a bound of the Busemann density by a dominating
L1 function. This will use the technology of maximal functions and will be
achieved in lemma 31.

Both of the lemmas 29 and 31 will follow from general considerations on the
Busemann function (see paragraph 4.3).

Lemma 29. For almost every y ∈ B(x,R)

lim
λ→1

σ(λp)(1− λ)(n+1)/2 =

√
k(p)

2
n+1
2 〈p, ν(p)〉

.
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Proof: We use Alexandrov’s theorem on the almost everywhere second differen-
tiability of convex functions [Ale39] [BCP96], to yield for almost every y ∈ B(x,R)

1

t2
|hy(tθ)− t2D2hy(0)(θ, θ)| → 0

as t→ 0, and hy : Ty∂Ω→ R is the height of function so that {y+z−ν(y)h(z) | z ∈
Ty∂Ω} is a subset of ∂Ω (n.b. hy(0) = 0). The bilinear form D2hy(0) is positive
semidefinite, and given almost everywhere by the weak derivative [HKM06]. It
has principal values r1, . . . rn−1 which are the principal curvatures, with principal
directions τ1, . . . , τn−1 which form an orthonormal basis. For ε ∈ R there is a t0
such that for every t < t0.

1

t2
|hy(tθ)− t2D2hy(0)(θ, θ)| ≤ ε,

so

[D2hy(0)− εI](θ, θ) ≤ hy(tθ) ≤ [D2hy(0) + εI](θ, θ).

This implies that the parabolas

Py,ε,λ := {y + z − tν(y) | (D2hy(0) + εI)(ζ, ζ) ≤ t ≤ λ,
satisfy

Py,ε,λ ⊂ Ωy,λ ⊂ Py,−ε,λ.
Finally we can proceed as in the proof of Proposition 2.8 in [BBV10]. �

We now consider a map hx : B(x,R) ⊂ Tx∂Ω→ ∂Ω.
Suppose that the restriction of hx to the line t 7→ y + tθ is W 2,p(R). Then

(y + tθ) + hx(y + tθ)ν(x)

= y + tθ − ν(x)h(y)− tν(x)Dhx(y) · θ − ν(x)

∫ t

0

∫ τ

0

θtD2hx(y + sθ)θ ds dτ.

Lemma 30. Let {θi |∈ N} be a countable dense set of directions in Sn−2 ⊂ Tx∂Ω.
There is a set E ⊂ B(x,R) of full measure such that for every y ∈ E the map
fy,i : t 7→ h(y + tθi) is in W 2,p(R), fy,i is twice differentiable at t = 0 and

(1)
d2

dt2
|t=0fy,i = θtiD

2h(y)θi.

Proof: This follows from the absolutely continuous on lines characterisation of
Sobolev functions cf. [HKM06]. For every direction we have a set E′i ⊂ B(x,R)∩θ⊥i
such that the map t 7→ h(y + tθi is in W 2,p(R) by Fubini, and for almost every t
the second derivative is given by the weak second derivative of h in the direction
θi. Let Ei be the set

Ei = {y + tθi ∈ B(x,R) | y ∈ E′i and s 7→ h(y + sθi)is twice differentiable

at t with weak derivative θtiD
2h(y + tθi)θi}.

Finally E =
⋂
i∈NEi. �

Lemma 31. Assuming Ω is a domain of class C1 ∩W 2,p for p ≥ (n − 1), p > 1
then there is a function f ∈ L1(∂Ω) such that

(1− λ)(n+1)/2σ(λp) ≤ f(p)

for all λ ≤ 1− λ0.



ON THE ENTROPY OF HILBERT GEOMETRIES OF LOW REGULARITIES 25

Proof: This proof is inspired by [Mat95, chapter 2, p.40]. Let θ1, . . . θn−1 be an
orthonormal basis for TxΩK. Define the set Ei to be the set of y such that hx|y+tθi

is in W 2,p(]a, b[). Again Ei is of full measure. Let E =
⋂
iEi.

For every i define the directional maximal function.

Mi(f)(y) = sup
t≤R/2

1

2t

∫ t

−t
|f(y + sθi)| ds

This is bounded from Lp(B(x,R))→ Lp(B(x,R/2)) and for 1 < p <∞, by Fubini’s
theorem and the boundedness of the usual maximal function on Lp(R)→ Lp(R).

For n = 2 and p = 1 this is bounded L1([x−R, x+R])→ L1,∞([x−R, x+R]).
We introduce several functions

gi = Mi(D
2h(·)(θi, θi))

and g = max{1,maxi gi〈ν(x), ν(y)〉} all of which are in Lp(B(x,R/2)). For y ∈ E
such that g(y) <∞

|h(y + tθi)− h(y)− tDh(y) · θi| =
∣∣∣∣∫ t

0

∫ τ

0

D2h(y + sθi)(θi, θi) ds dτ

∣∣∣∣
≤ 4t2

1

4t2

∫ t

−t

∫ t

−t
|D2h(y + sθi)| ds dτ

≤ 4t2gi(y) ≤ 4t2g(y).

Let τi ∈ TyΩ be such that ΠTx(τi) = θi. Let χi,λ be the intersection of the curve

t 7→ y + tθi − tν(x)Dh(y) · θi + t2g(y)ν(x),

and the plane

Ly,λ = {x | 〈x, ν(y)〉 = 〈y, ν(y)〉 − λ,
which we know to be in Ω for t sufficiently small, and Ly,λ. Then we know that

|ηi,λ| = |χi,λ + ν(y)λ−
√
λτi/

√
g(y)〈ν(x), ν(y)〉| ≤ λ

It follows that the convex hull of the points χi,λ has Hausdorff n− 1 measure given
by √

λ

g(y)

n−1

4(τ1 +
√
g(y)/λη1,λ) ∧ · · · ∧ (τn−1 +

√
g(y)/ληn−1).

Assume λ < 1/(10C(n)g(y)) = λ0(y), then this is greater than

κ

√
λ

g(y)

n−1

(9/10)

where τ1 ∧ · · · ∧ tn−1 = κ. Applying Lemma 27

σ(y − λν(y))λ
(n+1)/2

≤
2λ(n+1)/2

κ

∫ min{λ,λ0(y)}

0

√
λ′

g(y)

n−1

dλ
′
+ C(Ω) min{λ− λ0(y), 0}

1

c(n)g(y)n−1

−1

≤ C(n,Ω, R)
√
g(y)

n−1
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if λ < λ0(y) or λ0(y) = λ0 and otherwise

≤ C(n,Ω, R)
λ(n+1)/2

C(Ω) λ0(y)
g(y)n−1 + C(Ω)(λ− λ0(y)) 1

g(y)n−1C(n)10

≤ C(n,Ω, R)g(y)n−1.

Applying this inequality and Lemma 26 yields the result.
For n = 2 we do not have the error terms, and get

σ(y + λν(y))λ(n+1)/2 ≤
√
g(y).

But if g ∈ L1,∞ then
√
g is integrable (on a bounded set). �

Remark 32. It is worth commenting that although the centro-projective area
would appear to require that Ω is W 2,p for p ≥ (n − 1)/2, we can only get an
integrable bound in L1(∂Ω) for p ≥ n − 1. This is to be expected as this is the
natural exponent for a boundary of dimension n − 1. But still the question arises
whether this can be reduced. It is possible that there is a higher integrability result
for convex boundaries i.e. p ≥ n− 1− ε implies p ≥ n− 1.

Proof of Theorem 28: We can apply Lemmata 29 and 31 along with the dom-
inated convergence theorem. This allows us follow equation (26) in the proof of
Theorem 3.1 in [BBV10], and bring the limit into the integral, yielding the centro-
projective area.
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