La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite. Seule l'utilisation d'une règle graduée est autorisée.

Si au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il la signalera sur sa copie et poursuivra sa composition en expliquant les raisons des initiatives qu'il sera amené à prendre.

Dans ce sujet on s'intéresse à un problème d'arrêt optimal c'est-à-dire au problème du choix d'un moment pour entreprendre une action spécifique, afin de maximiser un gain attendu ou de minimiser un coût attendu.

Des problèmes d'arrêts optimaux peuvent être trouvés dans les domaines des statistiques, de l'économie et des mathématiques financières (par exemple dans la tarification des options américaines).

On peut modéliser le problème comme suit. Supposons que nous recevions une suite finie de nombres réels, un par un. Ces réels sont des réalisations de variables aléatoires indépendantes de lois connues à l'avance mais pas nécessairement identiques. Nous ne pouvons garder qu'un seul nombre de la suite. À chaque observation, nous pouvons soit sélectionner le nombre actuel, soit pousser notre chance et passer à l'observation suivante. Notre objectif est de maximiser la probabilité de sélectionner le nombre maximal de la suite.

Dans tout le sujet on considère un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. Toutes les variables aléatoires réelles et événements qui interviennent dans cet énoncé sont définies sur cet espace.

On rappelle que si A désigne un événement, $\mathbf{1}_A$ est la variable aléatoire qui vaut 1 sur A et 0 sur \bar{A} .

La partie 2 utilise des résultats de la partie 1. La partie 3 est indépendante des deux premières et seules les deux dernières questions 20 et 21 de la partie 4 utilisent des résultats établis dans les parties précédentes.

Un aide-mémoire Python se trouve à la fin de l'énoncé.

Pour les scripts et fonction Python, on supposera que les instructions suivantes ont été exécutées :

import numpy as np , numpy.random as rd , matplotlib.pyplot as plt

Partie 1 - Des résultats généraux

- 1. Montrer que pour tout t réel, $e^t \ge 1 + t$ et que, pour tout t > -1, $\ln(1+t) \le t$.
- 2. On définit la fonction f sur [0,1] par $f(t) = (1+t)e^{-t} t$.
 - (a) Étudier les variations de f et montrer qu'il existe un unique $\alpha \in]0,1[$ tel que $f(\alpha)=0$ et que pour tout $t\in [0,1],$ $f(t)>0 \iff t<\alpha.$
 - (b) Écrire un programme Python qui renvoie une valeur approchée de α à 10^{-3} près.
 - (c) Montrer que pour tout $t \in [0, 1]$, $e^t \le 1 + 2t$. En déduire que $\alpha \ge \frac{1}{\sqrt{2}}$.
- 3. Soit U une variable aléatoire à densité, à valeurs dans [0,1[, qui suit la loi uniforme et $p \in]0,\alpha[$. On pose $\beta=f(p)$. On définit les variables aléatoires X et Y par :

$$X = \mathbf{1}_{[\beta < U\beta + p]} \quad \text{et pour tout } \omega \in \Omega, \ Y(\omega) = \min \left\{ k \in \mathbb{N}/U(\omega) \leqslant \sum_{i=0}^k \frac{p^i}{i!} \mathrm{e}^{-p} \right\}$$

(a) Écrire une fonction Python, minimum(x,p) qui renvoie le minimum de l'ensemble $\left\{k \in \mathbb{N}/x \leqslant \sum_{i=0}^k \frac{p^i}{i!} e^{-p}\right\}$ lorsque $x \in [0,1[$ et $p \in]0,1[$.

En déduire une fonction simulY(p) qui réalise une simulation de la Y.

- (b) Montrer que Y suit la loi de Poisson de paramètre p.
- (c) Soit k un entier, $k \ge 2$. Montrer que si [Y = k] est réalisé alors [X = 0] l'est. En déduire que $\mathbb{P}([X = 0] \cap [Y = k]) = \frac{p^k}{k!} e^{-p}$.
- (d) Montrer que $[X=0] \cap [Y=1] = \emptyset$. En déduire que :

$$\mathbb{P}([X=1] \cap [Y=1]) = pe^{-p}, \quad \mathbb{P}([X=0] \cap [Y=0]) = \beta, \quad \mathbb{P}([X=1] \cap [Y=0]) = p(1-e^{-p})$$

- (e) Montrer que $\mathbb{P}(X \neq Y) = 1 + p (1 + 2p)e^{-p}$, puis que $\mathbb{P}(X \neq Y) \leq 2p^2$.
- 4. Inégalité de Boole Soit $k \in \mathbb{N}^*$, B_1, \ldots, B_k des événements. On pose $T = \sum_{i=1}^k \mathbf{1}_{B_i}$.
 - (a) Montrer que $\mathbb{P}(T \ge 1) = \mathbb{P}\left(\bigcup_{i=1}^{k} B_i\right)$.

(b) En utilisant une inégalité du cours, que l'on énoncera précisément, en déduire que :

$$\mathbb{P}\left(\bigcup_{i=1}^{k} B_{i}\right) \leqslant \sum_{i=1}^{k} \mathbb{P}\left(B_{i}\right)$$

Alain Guichet

5. Soit X et Y deux variables aléatoires à valeurs dans \mathbb{N} . On pose

$$\delta(X,Y) = \sum_{k=0}^{+\infty} |\mathbb{P}(X=k) - \mathbb{P}(Y=k)| \quad \text{et} \quad d(X,Y) = \mathbb{P}(X \neq Y)$$

- (a) Justifier que la série définissant $\delta(X,Y)$ est bien convergente.
- (b) Soit $k \in \mathbb{N}$ tel que $\mathbb{P}(X = k) \geqslant \mathbb{P}(Y = k)$. Montrer que $|\mathbb{P}(X=k) - \mathbb{P}(Y=k)| \leq \mathbb{P}([X=k] \cap [Y \neq k])$
- (c) En déduire que pour tout $k \in \mathbb{N}$,

$$\left|\mathbb{P}\left(X=k\right)-\mathbb{P}\left(Y=k\right)\right|\leqslant\mathbb{P}\left(\left[X=k\right]\cap\left[Y\neq k\right]\right)+\mathbb{P}\left(\left[X\neq k\right]\cap\left[Y=k\right]\right)$$

(d) En conclure que $\delta(X,Y) \leq 2d(X,Y) \leq 2$.

Partie 2 - Une inégalité d'après Hodge et Le Cam

On conserve les notations de la partie 1.

On considère une suite $(U_k)_{k\in\mathbb{N}^*}$ de variables aléatoires à densité indépendantes qui suivent la loi uniforme sur [0,1[. Soit $n \in \mathbb{N}^*$ et p_1, \ldots, p_n des réels appartenant à]0,1[. Pour tout $k \in [\![1,n]\!]$, on définit, comme X et Y dans la question 3 de la partie 1, X_k et Y_k avec U_k et p_k à la place de U et p.

On pose
$$\lambda = \sum_{k=1}^{n} p_k$$
, $S_n = \sum_{k=1}^{n} X_k$ et $T_n = \sum_{k=1}^{n} Y_k$.

On souhaite établir l'inégalité : $\delta(S_n T_n) \leq 4 \sum_{k=1}^{n} p_k^2$ (LC).

- 6. Montrer que l'un au moins des p_k est supérieur ou égal à α alors (LC) est vérifiée.
- On suppose dans la suite de cette partie que pour tout $k \in [1, n], p_k < \alpha$.
- 7. Justifier brièvement que X_1, \ldots, X_n (respectivement Y_1, \ldots, Y_n) sont indépendantes.
- 8. Quelle est la loi de T_n ? Si les p_k sont tous égaux à $\frac{\lambda}{n}$, quelle est la loi de S_n ? Quelle est alors la limite en loi de la suite $(S_n)_{n\in\mathbb{N}^*}$?
- 9. (a) Montrer que $[S_n \neq T_n] \subset \bigcup_{k=1}^n [X_k \neq Y_k]$.
 - (b) En déduire que pour tout $n \in \mathbb{N}^*$, $\delta(S_n, Y_n) \leqslant 4 \sum_{k=1}^n p_k^2$.
- 10. Un cas particulier On suppose dans cette question que tous les p_k sont égaux à $\frac{\lambda}{2}$

Montrer que pour tout $n \in \mathbb{N}^*$, $\sum_{k=0}^{n} \left| \binom{n}{k} \left(\frac{\lambda}{n} \right)^k \left(1 - \frac{\lambda}{n} \right)^{n-k} - \frac{\lambda^k}{k!} e^{-\lambda} \right| \leqslant \frac{4\lambda^2}{n}$.

- 11. Une application Soit n un entier, $n \geqslant 2$, on réalise n expériences de Bernoulli indépendantes avec les probabilités de succès respectives $\frac{1}{n+1}, \frac{1}{n+2}, \dots, \frac{1}{2n}$. On note S_n le nombre de succès de l'expérience totale et $s_n = \sum_{k=1}^{n} \frac{1}{n+k}$.
 - (a) Montrer que pour tout $k \in \mathbb{N}$, $\left| \mathbb{P}\left(S_n = k \right) \frac{s_n^k}{k!} e^{-s_n} \right| \leqslant \frac{4}{n}$
 - (b) Établir que pour tout $k \in [1, n]$,

$$\int_{k}^{k+1} \frac{1}{n+t} \, \mathrm{d}t \leqslant \frac{1}{n+k} \leqslant \int_{k-1}^{k} \frac{1}{n+t} \, \mathrm{d}t$$

- (c) En déduire un encadrement de s_n puis que $\lim_{n\to+\infty} s_n = \ln(2)$.
- (d) En conclure que la suite $(S_n)_{n\geqslant 2}$ converge en loi vers une variable aléatoire S qui suit une loi de Poisson de

Partie 3 - Étude du maximum d'une fonction

$$\text{Pour } x \in [0,+\infty[, \text{ on pose } h(x) = \begin{cases} \frac{\mathrm{e}^x - 1}{x} & \text{si } x > 0 \\ 1 & \text{si } x = 0 \end{cases}.$$

- 12. Montrer que h est de classe \mathcal{C}^1 sur \mathbb{R}^+ et préciser la valeur de h'(0).
- On définit alors la fonction g sur \mathbb{R}^+ par $g(x) = e^{-x} \int_0^x h(t) dt$.
- 13. (a) Montrer que pour tout $x \ge 0$, $g'(x) = e^{-x} \left(1 \int_0^x (h(t) h'(t)) dt \right)$.
 - (b) Montrer que pour tout t > 0, $h(t) h'(t) = \frac{e^t 1 t}{t^2}$.
 - (c) En déduire que pour tout $t \ge 0$, h(t) h'(t) > 0 et $\lim_{x \to +\infty} \int_0^x (h(t) h'(t)) dt = +\infty$.
 - (d) Dans le même tableau, représenter le signe de g' et les variations de g en justifiant que g possède un maximum qui est atteint en un unique réel noté $\gamma > 0$ que l'on fera apparaître dans ce tableau.
- 14. (a) Montrer que pour tout t > 0, $\frac{1}{2} \leqslant \frac{e^t 1 t}{t^2} \leqslant \frac{1}{2}e^t$.
 - (b) En déduire que pour tout $x \geqslant 0$, $e^{-x} \frac{3 e^x}{2} \leqslant g'(x) \leqslant e^{-x} \left(1 \frac{x}{2}\right)$.
 - (c) En conclure que $\gamma \in [\ln(3), 2]$.
- 15. (a) Soit $n \in \mathbb{N}^*$ et $x \in [0, n]$, montrer que :

$$\sum_{k=0}^{n} \frac{x^k}{k!} \leqslant \mathrm{e}^x \leqslant \sum_{k=0}^{n} \frac{x^k}{k!} + \frac{x^n}{n!} \sum_{k=n+1}^{+\infty} \left(\frac{x}{n+1} \right)^{k-n} \leqslant \sum_{k=0}^{n} \frac{x^k}{k!} + \frac{x^{n+1}}{n!}$$

et en déduire que
$$\sum_{k=1}^{n} \frac{x^{k-1}}{k!} \leqslant h(x) \leqslant \sum_{k=1}^{n} \frac{x^{k-1}}{k!} + \frac{x^{n}}{n!}.$$

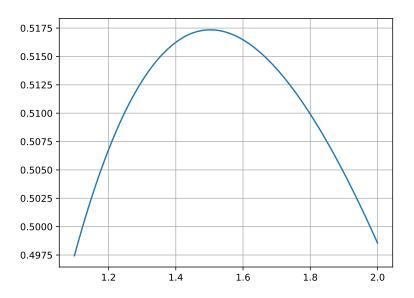
(b) En conclure que pour tout $n \in \mathbb{N}^*$ et $x \in [0, n]$,

$$e^{-x} \left(\sum_{k=1}^{n} \frac{x^k}{k!k} \right) \le g(x) \le e^{-x} \left(\sum_{k=1}^{n} \frac{x^k}{k!k} \right) + e^{-x} \frac{x^{n+1}}{(n+1)!}$$

puis que pour tout $x \ge 0$, $g(x) = e^{-x} \sum_{k=1}^{+\infty} \frac{x^k}{k!k}$.

16. Compléter le programme suivant pour qu'il trace la partie de la courbe de g comprise entre les abscisses $\ln(3)$ et 2, les valeurs de g étant calculées à 10^{-4} près :

On obtient le graphique suivant :



Partie 4 - Le problème du meilleur choix

On considère $(X_k)_{k\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes à densité. Soit $s\in\mathbb{R}$, pour tout $n\in\mathbb{N}^*$ on définit des variables aléatoires, $a_{n,s},\,Y_{n,s},\,Z_n$ et $K_{n,s}$ par, pour tout $\omega\in\Omega$:

$$a_{n,s}(\omega) = \min\left(\left\{k \in \llbracket 1,n \rrbracket \ / \ X_k(\omega) > s\right\} \cup \left\{n\right\}\right), \quad Y_{n,s}(\omega) = X_{a_{n,s}(\omega)}(\omega), \quad Z_n(\omega) = \max_{k \in \llbracket 1,n \rrbracket} (X_k(\omega))$$

et $K_{n,s}(\omega)$ est égal au nombre d'indices $k \in [1, n]$ tels que $X_k(\omega) > s$.

On cherche à choisir s pour maximiser $r_n = \mathbb{P}(Y_{n,s} = Z_n)$.

On pose pour tout $k \in [1, n]$, $p_k = \mathbb{P}(X_k > s)$ et on suppose que $p_k \neq 1$.

- 17. Une minoration dans le cas général
 - (a) Montrer que $\mathbb{P}(Y_{n,s} = Z_n) \geqslant \mathbb{P}(K_{n,s} = 1)$.
 - (b) On pose $\theta = \mathbb{P}(Z_n \leqslant s)$. Montrer que $\mathbb{P}(K_{n,s} = 1) = \theta \sum_{k=1}^n \frac{p_k}{1 p_k}$.
 - (c) En déduire que $\mathbb{P}(Y_{n,s} = Z_n) \geqslant -\theta \ln(\theta)$.
 - (d) En déduire l'existence d'au moins une valeur de s, que l'on définira à l'aide de la fonction de répartition F_n de Z_n , pour laquelle $\mathbb{P}(Y_{n,s}=Z_n)\geqslant \frac{1}{e}$.
- On suppose désormais que les X_k suivent la même loi donc que les p_k sont tous égaux, non nuls. On note p cette valeur commune, F la fonction de répartition et f une densité communes aux X_k . On admet que si X et Y sont deux variables à densité indépendantes, de fonction de répartition F_X pour X et de densité f_Y pour Y, on a alors $\mathbb{P}(X \leq Y) = \int_{-\infty}^{+\infty} F_X(t) f_Y(t) dt$.

On rappelle que si A est un événement de probabilité non nulle, $(\Omega, \mathcal{A}, \mathbb{P}_A)$ est un espace probabilisé admettant les mêmes variables aléatoires et ayant les mêmes propriétés que $(\Omega, \mathcal{A}, \mathbb{P})$.

- 18. Une estimation On suppose dans cette question que les X_k suivent la loi uniforme sur [0,1[.
 - (a) Montrer que s = 1 p.
 - (b) Écrire une fonction Python simulCouple(n,p) qui renvoie une simulation du couple $(Z_n, Y_{n,s})$.
 - (c) Écrire un programme Python qui réalise et affiche une estimation de r_{10} dans ces conditions lorsque n=10 et p=0.15.
- 19. Une expression explicite de r_n Soit $k \in [1, n]$, on note $I_1, \ldots, I_{\binom{n}{k}}$ les parties à k éléments de [1, n].

Pour tout
$$j \in \left[\left[1, \binom{n}{k} \right] \right]$$
, on définit A_j l'événement $\left(\bigcap_{i \in I_j} \left[X_i > s \right] \right) \cap \left(\bigcap_{i \notin I_j} \left[X_i \leqslant s \right] \right)$.

(a) Montrer que pour tout x réel et $i \in I_j$,

$$\mathbb{P}_{A_j}(X_i \leqslant x) = \begin{cases} \frac{F(x) - F(s)}{p} & \text{si } x > s \\ 0 & \text{sinon} \end{cases}$$

et que les X_i pour $i \in I_j$ sont indépendantes pour la probabilité \mathbb{P}_{A_j} .

(b) En déduire que pour tout $r \in I_i$:

$$\mathbb{P}_{A_j}\left(X_r = \max_{i \in I_j}(X_i)\right) = \frac{1}{p^k} \int_s^{+\infty} (F(t) - F(s))^{k-1} f(t) \, \mathrm{d}t = \frac{1}{k}$$

(c) Montrer que:

$$\mathbb{P}\left(\left[Y_{n,s}=Z_{n}\right]\cap\left[K_{n,s}=k\right]\right)=\sum_{j=1}^{\binom{n}{k}}\mathbb{P}\left(\left[Y_{n,s}=Z_{n}\right]\cap A_{j}\right)\qquad\text{et que}\qquad\mathbb{P}_{A_{j}}\left(Y_{n,s}=Z_{n}\right)=\frac{1}{k}$$

- (d) Montrer de même que $\mathbb{P}\left([Y_{n,s}=Z_n]\cap [K_{n,s}=0]\right)=\frac{1}{n}(1-p)^n$
- (e) En conclure que $r_n = \frac{1}{n}(1-p)^n + \sum_{k=1}^n \frac{1}{k} \binom{n}{k} p^k (1-p)^{n-k}$.
- 20. Comportement asymptotique On suppose que $p = \frac{\lambda}{n}$, λ étant un réel strictement positif ne dépendant pas de n.
 - (a) En utilisant un résultat de la partie 2, montrer que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{1}{k} \left| \binom{n}{k} \left(\frac{\lambda}{n} \right)^{k} \left(1 - \frac{\lambda}{n} \right)^{n-k} - \frac{\lambda^{k}}{k!} e^{-\lambda} \right| \leqslant \frac{4\lambda^{2}}{n}$$

- (b) En déduire que $\lim_{n\to+\infty} r_n = \left(\sum_{k=1}^{+\infty} \frac{\lambda^k}{k!k}\right) e^{-\lambda}$.
- 21. On suppose que n est assez grand pour pouvoir considérer que r_n vaut $\left(\sum_{k=1}^{+\infty} \frac{\lambda^k}{k!k}\right) e^{-\lambda}$. Comme choisir s pour que cette probabilité soit maximale?

Aide-mémoire PYTHON

Toutes les fonctions et instructions présentées ne sont pas utiles et il est possible d'utiliser d'autres fonctions ou instructions absentes de cet aide-mémoire.

Listes

```
Créer une liste vide
                   Créer une liste avec n fois l'élément a
[a]+n ou n*[a]
                   Ajoute l'élément a à la fin de la liste L
   L.append(a)
        L1 + L2
                   Concatène les deux listes L1 et L2
    L.count(a)
                   Renvoie le nombre d'occurrences de a dans la liste L
                   Renvoie le plus grand élément de la liste L
         max(L)
                   Renvoie le plus petit élément de la liste L
         min(L)
                   Renvoie la somme de tous les éléments de la liste L
         sum(L)
                   Vaut True si a se trouve au moins une fois dans L et False sinon
         a in L
```

Module mathématique numpy

```
import numpy as np
                         Crée un vecteur de n valeurs uniformément réparties entre a et b (inclus)
 np.linspace(a,b,n)
                         Crée le vecteur nul de taille n
         np.zeros(n)
          np.ones(n)
                         Crée le vecteur de taille n dont tous les coefficients valent 1
                         Renvoie le plus grand élément de M, matrice ou vecteur
           np.max(M)
                         Renvoie le plus petit élément de M, matrice ou vecteur
           np.min(M)
 np.arange(a,b,eps)
                         Renvoie le vecteur des flottants de a à b de pas constant eps, b étant exclu
                         Renvoie \sqrt{x} si x \ge 0
          np.sqrt(x)
           np.log(x)
                         Renvoie ln(x) si x > 0
                         Renvoie e^x
           np.exp(x)
                 np.e
                         Renvoie e
```

Sous module random de numpy pour la simulation probabiliste

```
import numpy.random as rd rd.random((r, s)) Simule une réalisation d'une matrice (r,s) dont les coefficients sont des variables aléatoires indépendantes qui suivent la loi uniforme\mathcal{U}([0,1]) Simule une réalisation d'une matrice (r,s) dont les coefficients sont des variables aléatoires indépendantes qui suivent la loi binomiale\mathcal{B}(n,p) Simule une réalisation d'une matrice (r,s) dont les coefficients sont des variables aléatoires indépendantes qui suivent la loi de Poisson\mathcal{P}(a)
```

Si le paramètre [r, s] est remplacé par r, ces fonctions renvoient la réalisation d'un vecteur de longueur r correspondant à la loi en question, et si ce paramètre est omis, elles renvoient un seul coefficient suivant les mêmes contraintes.

Sous module graphique pyplot de matplotlib