Exercice 1

1. (a) On raisonne par récurrence :

<u>Initialisation</u>: par définition $u_0 = 1 > 0$, la propriété est initialisée.

<u>Hérédité</u>: supposons $u_n > 0$ pour un certain rang $n \in \mathbb{N}$. Alors $u_n > 0$ par hypothèse de récurrence et $e^{1/u_n} > 0$ par positivité de l'exponentielle, par suite

$$u_{n+1} = u_n e^{1/u_n} > 0.$$

Ceci montre que la propriété est héréditaire.

<u>Conclusion</u>: selon le principe de récurrence, on a $u_n > 0$ pour tout $n ∈ \mathbb{N}$.

(b) Pour tout $n \in \mathbb{N}$, on a:

$$u_{n+1} - u_n = u_n e^{1/u_n} - u_n = u_n (e^{1/u_n} - 1),$$

or $u_n > 0$ et

$$e^{1/u_n} - 1 > 0 \iff e^{1/u_n} > 1$$

 $\iff \frac{1}{u_n} > 0$
 $\iff u_n > 0,$

donc $u_{n+1} - u_n > 0$. La suite (u_n) est strictement croissante

(c) La suite (u_n) admet une limite car elle est croissante. Supposons par l'absurde qu'elle converge vers une limite finie ℓ , on a nécessairement $\ell > 0$ puisque (u_n) est croissante. En passant à la limite dans le relation de récurrence, on trouve $\ell = \ell e^{1/\ell}$ par continuité de l'exponentielle, or

$$\ell = \ell e^{1/\ell} \iff 1 = e^{1/\ell}$$

 $\iff 0 = \frac{1}{\ell}$ absurde!

Ainsi la limite de (u_n) est infinie, plus précisément $\lim_{n\to+\infty}u_n=+\infty$ car $(u_n)_{n\in\mathbb{N}}$ est croissante.

3. <u>Limite en $+\infty$ </u>: On a $\lim_{x\to +\infty}\frac{1}{x}=0$ et $\lim_{X\to 0}e^X=1$, d'où $\lim_{x\to +\infty}e^{1/x}=1$ par composition de limites. Par produit de limites on trouve : $\lim_{x\to +\infty}f(x)=+\infty$.

 $\underline{\text{Limite en }0^+:} \text{ On pose } X = \frac{1}{x}, \text{ de sorte que } xe^{1/x} = \frac{e^X}{X}. \text{ Or } \lim_{x \to 0^+} X = +\infty \text{ et } \lim_{X \to +\infty} \frac{e^X}{X} = +\infty \text{ par croissance comparée, d'où } \lim_{x \to 0^+} xe^{1/x} = +\infty \text{ par composition de limites, soit } \boxed{\lim_{x \to 0} f(x) = +\infty}.$

4. La fonction $x \mapsto e^{1/x}$ est dérivable sur \mathbf{R}_+^* comme composée de fonctions dérivables, de ce fait f est dérivable sur \mathbf{R}_+^* comme produit de fonctions dérivables. Pour tout x > 0,

$$f'(x) = 1 \times e^{1/x} - x \times \frac{e^{1/x}}{x^2} = \frac{e^{1/x}(x-1)}{x}.$$

On a $e^{1/x} > 0$ et x > 0 sur \mathbf{R}_+^* , par conséquent f'(x) est de même signe que x-1. On en déduit le tableau :

x	0		1		+∞
f'(x)		-	0	+	
f(x)	+∞		→ e -		, +∞

5. (a) La série $\sum_{k \ge 0} \frac{x^{-k}}{k!} = \sum_{k \ge 0} \frac{\left(x^{-1}\right)^k}{k!}$ est de type exponentiel, par conséquent elle converge et

$$\sum_{k=0}^{+\infty} \frac{x^{-k}}{k!} = \sum_{k\geq 0}^{+\infty} \frac{\left(x^{-1}\right)^k}{k!} = e^{\left(x^{-1}\right)} = e^{1/x}.$$

(b) On a:

$$f(x) = xe^{1/x}$$

$$= x \sum_{k=0}^{+\infty} \frac{x^{-k}}{k!} \quad \text{(question précédente)}$$

$$= x \left(1 + \frac{1}{x} + \sum_{k=2}^{+\infty} \frac{x^{-k}}{k!}\right) \quad \text{(sommation par paquets)}$$

$$= x + 1 + x \sum_{k=2}^{+\infty} \frac{x^{-k}}{k!}$$

$$= x + 1 + x \times \frac{1}{x^2} \sum_{k=2}^{+\infty} \frac{x^{2-k}}{k!} \quad \text{(linéarité)}$$

$$= x + 1 + \frac{1}{x} \sum_{k=2}^{+\infty} \frac{x^{2-k}}{k!} \quad \text{(linéarité)}$$

6. (a) Minoration: on a

$$\sum_{k=2}^{+\infty} \frac{x^{2-k}}{k!} = \frac{1}{2} + \sum_{k=3}^{+\infty} \frac{x^{2-k}}{k!} \geqslant \frac{1}{2}$$

car la série $\sum_{k \ge 3} \frac{x^{2-k}}{k!}$ est à termes positifs.

Majoration: pour tout $k \ge 2$ on a $2 - k \le 0$, d'où $x^{2-k} \le 1$ car $x \ge 1$. Ainsi

$$\sum_{k=2}^{n} \frac{x^{2-k}}{k!} \leqslant \sum_{k=2}^{n} \frac{1}{k!} \leqslant \sum_{k=0}^{n} \frac{1}{k!},$$

pour tout $n \ge 2$. En faisant tendre n vers $+\infty$ on obtient :

$$\sum_{k=2}^{+\infty} \frac{x^{2-k}}{k!} \leqslant e.$$

(b) Par la question 5-b) on sait que:

$$f(x) - (x+1) = \frac{1}{x} \sum_{k=2}^{+\infty} \frac{x^{2-k}}{k!}.$$

Ainsi, en partant de l'encadrement obtenu à la question précédente, il vient :

$$\frac{1}{2} \leqslant \sum_{k=2}^{n} \frac{x^{2-k}}{k!} \leqslant e$$

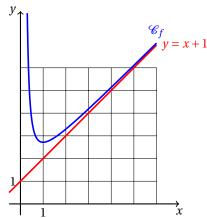
$$\frac{1}{2x} \leqslant \frac{1}{x} \sum_{k=2}^{n} \frac{x^{2-k}}{k!} \leqslant \frac{e}{x}$$

$$\boxed{\frac{1}{2x} \leqslant f(x) - (x+1) \leqslant \frac{e}{x}}.$$

7. On a $\lim_{x \to +\infty} \frac{2}{x} = \lim_{x \to +\infty} \frac{e}{x} = 0$, par le théorème des gendarmes cela implique

$$\lim_{x \to +\infty} f(x) - (x+1) = 0$$

autrement dit f(x) - (x+1) = o(1) lorsque x tend vers $+\infty$.



- 8.
- 9. (a) Soit $k \in \mathbb{N}$, par définition on a $u_{k+1} = u_k e^{1/u_k}$, sachant que la suite est à termes strictement positifs on peut prendre le logarithme de chacun des membres :

$$\begin{aligned} \ln(u_{k+1}) &= & \ln\left(u_k e^{1/u_k}\right) \\ &= & \ln\left(u_k\right) + \ln\left(e^{1/u_k}\right) \\ &= & \ln(u_k) + \frac{1}{u_k} \end{aligned}$$

soit

$$\ln\left(u_{k+1}\right) - \ln(u_k) = \frac{1}{u_k}.$$

(b) On somme l'égalité précédente pour k allant de 0 à n-1:

$$\begin{array}{rcl} \sum_{k=0}^{n-1} \ln{(u_{k+1})} - \ln{(u_k)} & = & \sum_{k=0}^{n-1} \frac{1}{u_k} \\ & \ln{(u_n)} - \ln{(u_0)} & = & \sum_{k=0}^{n-1} \frac{1}{u_k} & \text{(par t\'elescopage)} \\ & \ln{(u_n)} & = & \sum_{k=0}^{n-1} \frac{1}{u_k} & \text{(car } u_0 = 1) \end{array}$$

10. (a) Soit $k \in \mathbb{N}$, on sait que la suite (u_n) est croissante avec $u_0 = 1$, par conséquent $u_k \ge 1$. On peut ainsi appliquer l'encadrement (*) avec $x = u_k$, on obtient :

$$\frac{1}{2u_k} \leqslant f(u_k) - u_k - 1 \leqslant \frac{e}{u_k},$$

sachant que $f(u_k) = u_{k+1}$ et en ajoutant 1 à chaque membre, on arrive à :

$$\boxed{1+\frac{1}{2u_k}\leqslant u_{k+1}-u_k\leqslant 1+\frac{e}{u_k}}.$$

(b) On somme chaque membre pour k allant de 0 à n-1,:

$$\sum_{k=0}^{n-1} 1 + \frac{1}{2u_k} \leqslant \sum_{k=0}^{n-1} u_{k+1} - u_k \leqslant \sum_{k=0}^{n-1} 1 + \frac{e}{u_k}.$$

Par télescopage:

$$\sum_{k=0}^{n-1} u_{k+1} - u_k = u_n - u_0 = u_n - 1,$$

Par linéarité:

$$\sum_{k=0}^{n-1} 1 + \frac{1}{2u_k} = \sum_{k=0}^{n-1} 1 + \sum_{k=0}^{n-1} \frac{1}{2u_k} = n + \frac{1}{2} \sum_{k=0}^{n-1} \frac{1}{u_k},$$

et de la même manière

$$\sum_{k=0}^{n-1} 1 + \frac{e}{u_k} = n + e \sum_{k=0}^{n-1} \frac{1}{u_k}.$$

En remplaçant on trouve que:

$$n + \frac{1}{2} \sum_{k=0}^{n-1} \frac{1}{u_k} \le u_n - 1 \le n + e \sum_{k=0}^{n-1} \frac{1}{u_k}$$

Or, on a vu que $\sum_{k=0}^{n-1} \frac{1}{u_k} = \ln(u_n)$ en question 9–b), d'où

$$n+\frac{1}{2}\ln(u_n)\leqslant u_n-1\leqslant n+e\ln(u_n),$$

enfin en ajoutant 1 - n à chaque membre on conclut que :

$$\left|1+\frac{1}{2}\ln(u_n)\leqslant u_n-n\leqslant 1+e\ln(u_n)\right|.$$

- 11. (a) On sait que $\lim_{n \to +\infty} u_n = +\infty$ et que $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ par croissance comparée, d'où $\lim_{n \to +\infty} \frac{\ln(u_n)}{u_n} = 0$.
 - (b) On divise l'encadrement de la question 10-b) par u_n :

$$\frac{1}{u_n} + \frac{1}{2} \frac{\ln(u_n)}{u_n} \le 1 - \frac{n}{u_n} \le \frac{1}{u_n} + e \frac{\ln(u_n)}{u_n},$$

or $\lim_{n\to+\infty}\frac{\ln(u_n)}{u_n}=0$ et $\lim_{n\to+\infty}\frac{1}{u_n}=0$, ainsi les membres de droite et de gauche tendent vers 0 lorsque n tend vers $+\infty$. Par le théorème des gendarmes, il vient que $\lim_{n\to+\infty}1-\frac{n}{u_n}=0$, soit $\lim_{n\to+\infty}\frac{n}{u_n}=1$. Ceci montre que $u_n\sim n$ lorsque $u_n\sim$

12. On sait que, pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=0}^{n-1} \frac{1}{u_k} = \ln(u_n).$$

Par ailleurs, pour n voisin de $+\infty$, on a $u_n=n+o(n)$ d'après la question précédente, d'où

$$\sum_{k=0}^{n-1} \frac{1}{u_k} = \ln(n + o(n))$$

$$= \ln(n \times (1 + o(1)))$$

$$= \ln(n) + \ln(1 + o(1))$$

$$= \ln(n) + o(1) \quad (\operatorname{car} \ln(1 + o(1)) \xrightarrow[n \to +\infty]{} 0)$$

On en déduit que $\sum_{k=0}^{n-1} \frac{1}{u_k} \sim \ln(n) \text{ lorsque } n \text{ tend vers } +\infty$

Exercice 2

1. Montrons que la famille (I, J, K) est libre. Soient $(a, b, c) \in \mathbb{R}^3$,

$$aI + bJ + cJ = 0 \iff a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} a + c & b & b \\ b & a & c \\ b & c & a \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\iff \begin{cases} a = 0 \\ b = 0 \\ c = 0 \end{cases}$$

Ainsi la famille (I, J, K) est libre. Comme elle engendre \mathscr{E} , on conclut que (I, J, K) est une base de \mathscr{E} et dim $(\mathscr{E}) = 3$

2. Les matrices *J* et *K* sont symétriques donc diagonalisables.

3. (a) On trouve
$$J^2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 et $J^3 = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix} = \boxed{2J}$.

(b) D'après la question précédente $P(x) = x^3 - 2x$ est un polynôme annulateur de J. La factorisation :

$$P(x) = x^3 - 2x = x(x^2 - 2) = x(x - \sqrt{2})(x + \sqrt{2}),$$

montre que les racines de P sont 0, $\sqrt{2}$ et $-\sqrt{2}$. Il s'ensuit que les valeurs propres de J sont des éléments de $\{0, \sqrt{2}, -\sqrt{2}\}$.

4. (a) On a:

$$JU_1 = \begin{pmatrix} 2 \\ \sqrt{2} \\ \sqrt{2} \end{pmatrix} = \sqrt{2} \begin{pmatrix} \sqrt{2} \\ 1 \\ 1 \end{pmatrix} = \sqrt{2}U_1 \text{ et } JU_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

donc U_1 et U_2 sont des vecteurs propres de J respectivement associés aux valeurs propres $\sqrt{2}$ et 0.

(b) On résout le système
$$(J + \sqrt{2}I)X = 0$$
 avec $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

$$(J+\sqrt{2}I)X = 0 \iff \begin{pmatrix} \sqrt{2} & 1 & 1 \\ 1 & \sqrt{2} & 0 \\ 1 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} \sqrt{2}x+y+z=0 \\ x+\sqrt{2}y=0 \\ x+\sqrt{2}z=0 \end{pmatrix}$$

$$\iff \begin{cases} \sqrt{2}x+y+z=0 \\ \sqrt{2}x+2y=0 & L_2 \leftarrow \sqrt{2}L_2 \\ \sqrt{2}x+2z=0 & L_3 \leftarrow \sqrt{2}L_3 \end{cases}$$

$$\iff \begin{cases} \sqrt{2}x+y+z=0 \\ y-z=0 & L_2 \leftarrow L_2 - L_1 \\ -y+z=0 & L_3 \leftarrow L_3 - L_1 \end{cases}$$

$$\iff \begin{cases} \sqrt{2}x+y+z=0 \\ z=y \\ x=y \end{cases}$$

$$\iff \begin{cases} x=-\sqrt{2}y \\ z=y \end{cases}$$

$$\iff X = \begin{pmatrix} -\sqrt{2}y \\ y \\ y \end{pmatrix} = y \begin{pmatrix} -\sqrt{2} \\ 1 \\ 1 \end{pmatrix} \text{ avec } y \in \mathbf{R}.$$

On en déduit que
$$U_3 = \begin{pmatrix} -\sqrt{2} \\ 1 \\ 1 \end{pmatrix}$$
 est un vecteur propre de J associé à la valeur propre $\sqrt{2}$

- 5. (a) La famille (U_1, U_2, U_3) est libre puisqu'elle est formée de vecteurs propres de J associés à des valeurs propres distinctes. Il s'agit d'une famille libre de trois vecteurs de $\mathcal{M}_{3,1}(\mathbf{R})$, qui est lui-même de dimension trois, donc (U_1, U_2, U_3) est une base de $\mathcal{M}_{3,1}(\mathbf{R})$.
 - (b) On prend pour P la matrice de passage de la base canonique de $\mathcal{M}_{3,1}(\mathbf{R})$ vers la base (U_1, U_2, U_3) . Cette matrice est inversible et ses colonnes correspondent aux matrices colonnes U_1, U_2, U_3 :

$$P = \begin{pmatrix} \sqrt{2} & 0 & -\sqrt{2} \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

- 6. (a) Après calculs on trouve : $KU_1 = U_1$, $KU_2 = -U_2$ et $KU_3 = U_3$. Il en ressort que U_1 , U_2 et U_3 sont des vecteurs propres de K respectivement associés aux valeurs propres 1, -1 et 1. Or on a déjà vu en 5-a) que (U_1, U_2, U_3) est une base de $\mathcal{M}_{3,1}(\mathbf{R})$, donc (U_1, U_2, U_3) est une base de $\mathcal{M}_{3,1}(\mathbf{R})$ formée de vecteurs propres de K.
 - (b) Comme P est la matrice de passage de la base canonique dans la base (U_1, U_2, U_3) , les colonnes de la matrice $P^{-1}KP$ sont les matrices coordonnées de KU_1 , KU_2 et KU_3 dans la base (U_1, U_2, U_3) :

$$P^{-1}KP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

7. (a) On développe:

$$P^{-1}MP = P^{-1}(aI + bJ + cK)P = aP^{-1}IP + bP^{-1}JP + cP^{-1}KP = aI + bP^{-1}JP + cP^{-1}KP$$

puis on remplace par les tableaux de nombres :

$$P^{-1}MP = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\sqrt{2} \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{bmatrix} a + b\sqrt{2} + c & 0 & 0 \\ 0 & a - c & 0 \\ 0 & 0 & a - b\sqrt{2} + c \end{bmatrix}$$

(b) La matrice $P^{-1}MP$ étant diagonale, ses valeurs propres sont $a + b\sqrt{2} + c$, a - c et $a - b\sqrt{2} + c$ (éventuellement avec répétition). Or, deux matrices semblables ont mêmes valeurs propres, d'où

$$Sp(M) = Sp(P^{-1}MP) = \left\{ a + b\sqrt{2} + c, a - c, a - b\sqrt{2} + c \right\}.$$

8. (a) On a:

$$s(I) = (1, 1, 1), \quad s(J) = \left(\sqrt{2}, 0, -\sqrt{2}\right) \quad \text{et} \quad s(K) = (1, -1, 1).$$

On en déduit :

$$S = \begin{pmatrix} 1 & \sqrt{2} & 1 \\ 1 & 0 & -1 \\ 1 & -\sqrt{2} & 1 \end{pmatrix}.$$

(b) On applique la méthode de Gauss à la matrice *S* :

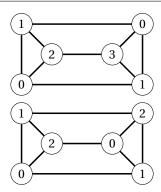
$$1. \begin{pmatrix} 1 & \sqrt{2} & 1 \\ 1 & 0 & -1 \\ 1 & -\sqrt{2} & 1 \end{pmatrix} \qquad \qquad 2. \begin{pmatrix} 1 & 0 & -1 \\ 1 & \sqrt{2} & 1 \\ 1 & -\sqrt{2} & 1 \end{pmatrix} \quad L_1 \leftrightarrow L_2 \qquad \qquad 3. \begin{pmatrix} 1 & 0 & -1 \\ 0 & \sqrt{2} & 2 \\ 0 & -\sqrt{2} & 2 \end{pmatrix} \quad L_2 \leftarrow L_2 - L_1 \\ L_3 \leftarrow L_3 - L_1 \qquad \qquad \qquad 4. \begin{pmatrix} 1 & 0 & -1 \\ 0 & \sqrt{2} & 2 \\ 0 & 0 & 4 \end{pmatrix} \quad L_3 \leftarrow L_3 + L_2$$

On obtient une matrice triangulaire dont les coefficients diagonaux sont tous non nuls, il s'ensuit que la matrice S est inversible, et que l'application linéaire s est bijective.

```
def min_ext(L):
    m = 0
    while m in L:
        m = m + 1
    return(m)
```

```
def coloration(A):
    n = len(A[0])
    C = [i for i in range(n)]
    for i in range(1,n):
        C_voisins = [C[j] for j in voisins(A,i)]
        C[i] = min_ext(C_voisins)
    return(C)
```

- 12. (a) En exécutant « coloration(A) » on obtient la liste [0,1,0,1,2,3], dont voici la coloration associée :
 - (b) La réponse est oui, voici une coloration de *G* avec trois



Exercice 3

1. (a) On sait que $U(\Omega) =]0, 1]$, or :

$$\begin{array}{ccc} 0 < U \leqslant 1 & \Longleftrightarrow & 0 < \sqrt{U} \leqslant 1 \\ & \Longleftrightarrow & \frac{1}{\sqrt{U}} \geqslant 1 \\ & \Longleftrightarrow & V \geqslant 1. \end{array}$$

Ainsi
$$V(\Omega) \subset [1, +\infty[$$

(b) Si x < 1, alors $F_V(x) = P(V \le x) = 0$, car $V(\Omega) \subset [1, +\infty[$. Si $x \ge 1$, alors

$$F_V(x) = P(V \leqslant x) = P\left(\frac{1}{\sqrt{U}} \leqslant x\right) = P\left(U \geqslant \frac{1}{x^2}\right) = 1 - P\left(U < \frac{1}{x^2}\right) = \boxed{1 - \frac{1}{x^2}},$$

car $U \hookrightarrow \mathcal{U}(]0,1]$) et $\frac{1}{x^2} \in]0,1]$.

(c) On vérifie les points suivants :

- La fonction F_V est de classe C^1 sur $\mathbb{R} \setminus \{1\}$. En effet, F_V est constante sur $]-\infty, 1[$, et elle s'exprime comme somme de fonctions usuelles de classe C^1 sur]1, $+\infty$ [.
- La fonction F_V est continue sur **R**. D'après le point précédent, F_V est continue sur **R**\{1} car de classe C^1 sur cet ensemble. De plus,

$$\lim_{x \to 1^+} F_V(x) = \lim_{x \to 1^+} 1 - \frac{1}{x^2} = 0 \quad \text{et} \quad \lim_{x \to 1^-} F_V(x) = \lim_{x \to 1^-} 0 = 0 \quad \text{et} \quad F_V(1) = 0,$$

ce qui montre que F_V est continue en 1. Donc F_V est continue sur **R**.

On en déduit que la variable aléatoire V admet une densité f_V définie par : $f_V(x) = \begin{cases} \frac{2}{x^3} & \text{si } x \geqslant 1 \\ 0 & \text{si } x < 1 \end{cases}$.

2. Espérance de V. L'intégrale $\int_{-\infty}^{1} x f_V(x) dx$ converge absolument et est nulle car $f_V = 0$ sur $[1, +\infty[$. D'autre part, la fonction $x \mapsto x f_V(x)$ est continue et positive sur $[1, +\infty[$, et

$$\int_{1}^{A} x f_{V}(x) dx = \int_{1}^{A} \frac{2}{x^{2}} dx = 2 \left[-\frac{1}{x} \right]_{1}^{A} = 2 \left(1 - \frac{1}{A} \right) \xrightarrow[A \to +\infty]{} 2.$$

Ainsi l'intégrale $\int_{-\infty}^{+\infty} x f_V(x) dx$ converge absolument et vaut 2, donc V admet une espérance et E(V) = 2

$$\int_{1}^{A} x^{2} f_{V}(x) dx = \int_{1}^{A} \frac{2}{x} dx = 2 [\ln(x)]_{1}^{A} = 2 \ln(A) \xrightarrow[A \to +\infty]{} +\infty.$$

On en déduit que V n'admet par de moment d'ordre 2, par conséquent V n'admet pas de variance

(a) Pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$,

$$F_n(x) = P(M_n \leqslant x)$$

$$= P((V_1 \leqslant x) \cap ... \cap (V_n \leqslant x))$$

$$= P(V_1 \leqslant x) \times ... \times P(V_n \leqslant x) \quad \text{(par indépendance de } V_1, ..., V_n)$$

$$= (F_V(x))^n.$$

(b) Si x < 1, alors $\lim_{n \to +\infty} F_n(x) = \lim_{n \to +\infty} 0^n = 0$.

Si
$$x \ge 1$$
, alors $\lim_{n \to +\infty} F_n(x) = \lim_{n \to +\infty} \left(1 - \frac{1}{x^2}\right)^n = 0$ car $0 \le 1 - \frac{1}{x^2} < 1$.
Finalement on trouve $\lim_{n \to +\infty} F_n(x) = 0$ pour tout $x \in \mathbb{R}$.

(c) Si la suite de variables aléatoires $(M_n)_{n \ge 1}$ convergeait en loi vers une variable aléatoire M, alors sa fonction de répartition F_M serait donnée par :

$$\forall x \in \mathbf{R}, \quad F_M(x) = \lim_{n \to +\infty} F_n(x) = 0.$$

Mais ceci est impossible car la fonction nulle n'est pas la fonction de répartition d'une variable aléatoire (elle n'admet pas 1 comme limite en $+\infty$). En conclusion, la suite $(M_n)_{n\geq 1}$ ne converge en loi vers aucune variable aléatoire.

(a) On fixe x > 0. Pour tout $n \in \mathbb{N}^*$, 4.

$$P\left(\frac{M_n}{\sqrt{n}} \leqslant x\right) = P\left(M_n \leqslant x\sqrt{n}\right),$$

= $\left[F_V\left(x\sqrt{n}\right)\right]^n.$

En supposant *n* suffisamment grand on a $x\sqrt{n} \ge 1$, et par suite

$$P\left(\frac{M_n}{\sqrt{n}} \leqslant x\right) = \left(1 - \frac{1}{nx^2}\right)^n$$
$$= e^{n\ln\left(1 - \frac{1}{nx^2}\right)}$$

Or $\lim_{n \to +\infty} -\frac{1}{n x^2} = 0$ et $\ln(1+u) \sim u$ pour u voisin de 0, ainsi

$$\ln\left(1 - \frac{1}{nx^2}\right) \quad \underset{n \to +\infty}{\sim} \quad -\frac{1}{nx^2}$$

$$n\ln\left(1 - \frac{1}{nx^2}\right) \quad \underset{n \to +\infty}{\sim} \quad -\frac{1}{x^2}.$$

On en déduit que $\lim_{n\to+\infty} n \ln \left(1 - \frac{1}{nx^2}\right) = -\frac{1}{x^2}$, ainsi par continuité de la fonction exp :

$$\lim_{n \to +\infty} P\left(\frac{M_n}{\sqrt{n}} \leqslant x\right) = \lim_{n \to +\infty} e^{n \ln\left(1 - \frac{1}{nx^2}\right)} = e^{-\frac{1}{x^2}}.$$

- (b) Montrons que $\lim_{n \to +\infty} G_n(x) = F_W(x)$ pour tout $x \in \mathbf{R}$
 - Soit $x \le 0$, comme $M_n(\Omega) = [1, +\infty[$ on a $P\left(\frac{M_n}{\sqrt{n}} \le x\right) = P\left(M_n \le \sqrt{n}x\right) = 0$ pour tout $n \in \mathbb{N}^*$, ainsi

$$\lim_{n \to +\infty} G_n(x) = \lim_{n \to +\infty} P\left(\frac{M_n}{\sqrt{n}} \leqslant x\right) = 0 = F_W(x).$$

• Soit x > 0, on a vu précédemment que $\lim_{n \to +\infty} G_n(x) = e^{-\frac{1}{x^2}} = F_W(x)$.

On en déduit que $\left\lceil \text{la suite}\left(\frac{M_n}{\sqrt{n}}\right)_{n\geqslant 1} \right
cent$ converge en loi vers W .

- 5. (a) SELECT montant FROM sinistres WHERE annee = 2024;
 - (b) SELECT mois, annee FROM sinistres WHERE montant > 1E6;
- 6. INSERT INTO sinistres VALUES (7652, 'avril', 2025, 1540);
- 7. Comme $N \hookrightarrow \mathscr{P}(\lambda)$, on a $N(\Omega) = \mathbf{N}$ et $P(N = n) = e^{-\lambda} \frac{\lambda^n}{n!}$ pour tout $n \in \mathbf{N}$
- 8. On sait que $N(\Omega) = \mathbf{N}$, or T peut prendre n'importe quelle valeur entre 0 et N, par conséquent $T(\Omega) = \mathbf{N}$.
- 9. (a) On regarde chaque sinistre comme une expérience de Bernoulli dont le succès est « le coût du sinistre dépasse A », de probabilité $P(V > A) = 1 P(V \le A) = \frac{1}{A^2}$. Ainsi, sous l'hypothèse (N = n), la variable aléatoire T compte le nombre de succès parmi n épreuves de Bernoulli indépendantes et de même probabilité de succès $\frac{1}{A^2}$, de ce fait $T \hookrightarrow \mathcal{B}\left(n, \frac{1}{A^2}\right)$.
 - (b) On sait que la loi conditionnelle de T sachant (N = n) est $\mathscr{B}\left(n, \frac{1}{A^2}\right)$, on en déduit :
 - pour tout $k \in [0, n]$, $P_{(N=n)}(T=k) = \binom{n}{k} \left(\frac{1}{A^2}\right)^k \left(1 \frac{1}{A^2}\right)^{n-k}$,
 - pour tout k > n, $P_{(N=n)}(T = k) = 0$.
- 10. Soit $k \in \mathbb{N}$, on applique la formule des probabilités totales avec le système complet d'évènements $\{(N=n)\}_{n \in \mathbb{N}}$:

$$\begin{split} P(T=k) &= \sum_{n=0}^{+\infty} P(N=n) \; P_{(N=n)}(T=k) \\ &= \sum_{n=k}^{+\infty} e^{-\lambda} \frac{\lambda^n}{n!} \, \binom{n}{k} \left(\frac{1}{A^2}\right)^k \left(1 - \frac{1}{A^2}\right)^{n-k} \\ &= e^{-\lambda} \, \left(\frac{1}{A^2}\right)^k \, \sum_{n=k}^{+\infty} \frac{\lambda^n}{n!} \, \binom{n}{k} \left(1 - \frac{1}{A^2}\right)^{n-k}. \end{split}$$

On remarque que $\frac{\lambda^n}{n!} \binom{n}{k} = \frac{\lambda^n}{n!} \frac{n!}{k! (n-k)!} = \frac{1}{k!} \frac{\lambda^n}{(n-k)!}$, ainsi

$$P(T = k) = \frac{e^{-\lambda}}{k!} \left(\frac{1}{A^2}\right)^k \sum_{n=k}^{+\infty} \frac{\lambda^n}{(n-k)!} \left(1 - \frac{1}{A^2}\right)^{n-k}.$$

On effectue maintenant le changement d'indice m = n - k:

$$\begin{split} P(T=k) &= \frac{e^{-\lambda}}{k!} \left(\frac{1}{A^2}\right)^k \sum_{m=0}^{+\infty} \frac{\lambda^{m+k}}{m!} \left(1 - \frac{1}{A^2}\right)^m, \\ &= \frac{e^{-\lambda}}{k!} \left(\frac{\lambda}{A^2}\right)^k \sum_{m=0}^{+\infty} \frac{\lambda^m}{m!} \left(1 - \frac{1}{A^2}\right)^m, \\ &= \frac{e^{-\lambda}}{k!} \left(\frac{\lambda}{A^2}\right)^k \sum_{m=0}^{+\infty} \frac{\left(\lambda - \frac{\lambda}{A^2}\right)^m}{m!}. \end{split}$$

On reconnaît une série exponentielle, d'où:

$$P(T = k) = \frac{e^{-\lambda}}{k!} \left(\frac{\lambda}{A^2}\right)^k e^{\lambda - \frac{\lambda}{A^2}}$$
$$= \left[\frac{e^{-\frac{\lambda}{A^2}}}{k!} \left(\frac{\lambda}{A^2}\right)^k\right].$$

Il s'ensuit que T suit la loit de Poisson de paramètre $\frac{\lambda}{A^2}$

11. En moyenne, on compte $E(T) = \frac{\lambda}{A^2}$ sinistres avec un coût supérieur à A en un an.

Fin du corrigé